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ABSTRACT 

The power system stability is the accurate operation of the electric grid by restoring balance after being subjected to an 
abnormal condition such as fault, line switching, load rejection, and loss of excitation. Protective equipment in high 
voltage substations should fast and precisely localize the faults. Some abnormal conditions in the power system such as 
out-of-step (OOS) condition which is not a real fault, but the protection equipment will consider it is. This misjudgment 
will cause the loss of synchronism between areas within the power system or between interconnected systems and will 
lead to blackout of the national grid. This paper studied the OOS condition, philosophy of protection relay device and 
how to avoid the false operation for distance function by Out of Step Blocking (OSB) by using the advanced protection 
relay, to improve the stability of power system. 
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1. Introduction 
The power system quality is the main challenge at design the power system for saving the stable electric power source to 
the consumers. Stability in the power system is defined as the accurate operation of the system by recovering a state of 
operating balance after any abnormal condition such as faults, over or under voltage cases at switching time, load rejection 
and at loss of excitation [1]. Over Head Transmission Line (OHTL) is the main parts in the power system which transmits 
the power from the generation to the electrical loads [2]. OHTL is the most part that’s face the faults in the system. So, it’s 
important to use the protection system with OHTL, since, it’s mostly extended across large geographical regions to 
transport the power from generators to load centers. So, it is possible to simulate faults along the OHTL which ranges from 
conduction that failure to loss of insulation [3]. Power Swing Condition (PSC) can be defined as a variation in three phase 
power equalized for voltage and also three phase current flow [4]. The power flow from generator to the grid is a high 
dynamic network connecting via OHTL. Figure 1 shows the single line diagram for the two sources power system, at stable 
conditions in power system, it is operated very compact to their nominal frequency (50 or 60 Hz) and typically maintain 
absolute voltage differences varies between 5%. 

The frequency of a stable system varies between ± 0.02 Hz. The equalized in active power and reactive power between 
power generated and consumed exists during stable operating conditions[5]. The power flow in the power system, its effect 
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by any change or unstable in the loads or power generated, this change in power flow still in the network until reach to 
equalization between load demand and power generation[6]. These changes conditions in power flow happen more times, 
but it's immediately compensated by control systems, and normally have no detrimental effect on the power grid or its 
protective systems[7]. There are some abnormal conditions in power system, that’s may lead to loss of synchronism between 
power generator and the rest of the utility system for the load, or between adjacent utility interconnected with power 
systems. At out of synchronism condition in power system, it is important to separate immediately the power generator or 
the system areas that’s operating asynchronously, this separation to avoid widespread outages or lead to black out and 
equipment damage. An effective mitigating way to contain such a disturbance is done through control in the power system 
using the OOS function in protection systems. Researchers study OOS condition in power system by adjusting the 
Intelligent Electronic Devices (IEDs) to detect OOS by the time interval required by the apparent impedance locus to cross 
the two characteristics (buffer area), if the time exceeds a specified value, then the power swing blocking function is 
initiated[8]. But this method is not easily to simulate. 

 CB B 
 
 
 
 

Figure 1. Single line diagram for two sources power system 
 

Nomenclature 

OOS Out-Of-Step 

OSB Out-Of-Step Blocking 

OST Out-Of-Step Tripping 

PSC Power Swing Condition 
EPS Electrical Power System 

IED Intelligent Electronic Device 

P Active Power 
Es Sending-end source voltage magnitude 
ER Receiving-end source voltage magnitude 
δ Angle difference between two sources 

X Total reactance of the transmission line 
SLG Single Line to Ground Fault 

LL Line to Line Faults 
DLG Double Line to Ground Faults 

LLL Three Phase Faults 

OHTL Over Head Transmission Line 
-R – X Arc of the circle 

δ1 Rotor angle 

tcr Fault clearing time 
H The equivalent rotor angle inertia 

ZL The transmission line of impedance 

δ0 Initial rotor angle 
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Also, may lead to false operation for OSB at some actions in power system such as starting inrush current. This inrush 
current generates at energizing the power transformer that’s a one from loads for the OHL which need to design the OOS. 
So, this paper shows optimum design for distance protection function to control system by using IEDs that is achieved with 
an Out-Of-Step Blocking (OSB). However, OSB systems must be balanced with Out-Of-Step Tripping (OST) of distance 
relay elements or other IEDs functions to operate during unstable power swings. Using OSB by the design that shown in 
this paper will prevent the system black out or separate un-synchronizing area by false operation[9]. 

2. Distance protection performance 
Many years, the world has been successfully used for distance protection functions with OHTL[10]. It's considered the main 
protection for OHTL. The development in the protection relays from electromechanical relay and solid-state relays with 
mho quadrature to Intelligent Electronic Device (IEDs), numerical relay is the important factor in the widespread 
acceptance of this type of protection functions at different voltage levels all over the world[11]. The first zone in distance 
function protection is used to provide primary high-speed protection which operates instantaneous, to a significant portion 
of the transmission line. The second zone is used to cover the rest of the protected line and provide some backup for the 
remote end bus[10,11]. The third zone is the backup protection for the first and second zone for all the lines connected to the 
remote end bus. The applications for the distance function in IEDs are required for understanding of operating principles, 
with consideration the factors that effect on the performance of the protection relays under different abnormal 
conditions in power system[12]. The setting of distance IEDs should ensure that the relay is not going to operate when not 
required and will operate, only when it’s necessary[10-12]. IEDs distance protection effectively measures the impedance 
between the relay location and the fault by measuring voltage and current in the transmission line. If the resistance of the 
fault is low, the impedance calculated is proportional to the distance from the current transformer which supplied the 
distance relay to the fault[13]. A distance protection function in IEDs is designed to protect the faults occurring in OHTL 
between the current transformer location, the selected reach point and remains stable for all faults outside this region or 
zones[14]. 

3. Analysis of symmetrical fault in power system 
To analyze the fault, it’s important to simulate the fault in three components that’s positive sequence and negative sequence 
and zero sequence. Figure 2a shows the positive sequence components are equal in magnitude values and the angle 
difference between each phase by 120 degrees with the same sequence as the original phases, also the currents and voltages 
follow the same cycle in typical counter clockwise rotation electrical system that’s called the “abc”. Figure 2b shows the 
negative sequence components that’s equalized in magnitude, the phase shift between phases is 120o and its opposite phase 
sequence from the original system that’s identified as “acb”. Figure 4c shows the zero sequence components that’s three-
phase equalized in magnitude and the phase shift between phases is zero. The zero sequence components are not presented 
at symmetrical fault [15, 16]. 
 

 
 

Figure 2. Analyze the sequence component in the power system 
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Firstly, the Change in magnitude: 

a = 1∠120° = −0.5 + j0.866                                          (1)  

a2 = 1∠240° = −0.5 − j0.866  (2)  

a3 = 1∠360° = 1 + j0                                                       (3) 

From these equations, useful combinations can be derived 

1 + a + a2 = 0 
1 − a2 = √3∠30°                                                            (4) 
Or 
1 − a = √3∠ − 30° 
a2 − a = √3∠270°                                                           (5) 
Or 
a − a2 = √3∠90°                                                        (6) 

Any three-phase system of phasors will always be the sum of the three components.  
Positive sequence voltage is: 
Va1  Vb1  Vc1 
Negative sequence voltage is: 
Va2  Vb2  Vc2 
Zero sequence voltage is: 
Va0  Vb0  Vc0 
The original system phase components can be presented from Va, Vb and Vc,  
Va = Va0 + Va1 + Va2 
Vb = Vb0 + Vb1 + Vb2                                                  (7) 
Vc = Vc0 + Vc1 + Vc2 
From equations (1) to (5) Zero sequence component 
Va0 = Vb0 = Vc0 
Positive sequence component 
Vb1 = a2 Va1  
Vc1 = a Va1 
Negative sequence component 
Vb2 = a Va2  
Vc2 = a2 Va2 
Va, Vb and Vc can be expressed in terms of phase “a” components only as:  
Va = Va0 + Va1 + Va2 
Vb = Va0 + a2 Va1 + a Va2 
Vc = Va0 + a Va1 + a2 Va2 
This equation can be accomplished in a matrix form:  

 
Equation (8) can be written as: 
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This equation can be reversed in order to obtain the positive, negative and zero sequences from the system phasors 

 

3.1 Symmetrical fault analysis  
Three-phase fault is known the symmetrical fault where the voltage is zero in the fault site. Figure 3 shows the general 
simulation for the symmetrical fault, Figure 4 shows the sequence diagram of a symmetrical fault [15-16]. 

   
At fault impedance Zf is zero, 

 
Substituted into equation (13) 

 
So, by solving the equations: 
 
Where  

 
And the phase Voltage is: 

 

4. Out of Step and Distance Relaying 
In this part, we will introduce the concept of power swings. It will be shown that the post fault power swings may encroach 

the relay characteristics. This can lead to nuisance tripping of distance relays which can sacrifice the system security.  

4.1 Stable condition in the power system  

At the steady state in the power system, the electrical loads are equalized with the mechanical torque applied to the 
generator. Figure 2 shows the power angle curve for the operation system that discussed in Figure 1 for the two sources. At 
fault in the system, the amount of the output power will reduce, but the feedback control can’t increase the mechanical 
torque to the rotor instantaneous [17]. Figure 6 shows the stable transient point of δ with transferring electric power P0 , this 
angle will change at the fault condition where the output power will reduce to PF, at this moment the generator rotor starts 
to accelerate the speed but the mechanical input not changed so the operation angle δ will be increase [18]. At clearing fault, 
the generator angle will reach to δc, because the output electrical power PC at δc is larger than the input mechanical power  
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P0 and the generator speed will begin to decreases, the inertia of the rotor cannot re-turn the angle δc immediately to δ. So, 
the angle continues increase to δF. (Area-2) is the energy lost at deceleration its equal to the energy gained at acceleration 
in (Area-1) this is called equal area criterion[17,18].  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 
 

4.2 Transient unstable power system  
If δF is smaller than δL, the system is transiently stable as shown in Figure 5, and the two sources angle difference 
eventually return back to original balance point  δ0. However, if (area-2) is smaller than (area-1) the angle  δ increase to 
angle δL. This led to the electric power output from the generators lower than the input mechanical power. Therefore, the 
rotor will accelerate again and δ , it is will increase beyond recovery[18]. This is a transiently unstable condition in the  
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system, as shown in Figure 7. At condition in the power system, the two equivalent generators rotate at a different speed 
leading to an unstable system. This event is called a loss of synchronism or an OOS condition in the power system [19].  

4.3 Analysis of two area system  

Power swings refer to the power flows oscillation on OHTL at the system disturbance. By consider a simple two machines 
system connected by a transmission line of impedance ZL as shown in Figure 1 ES and ER are the generator voltages at 
two ends and assume the system is purely reactive. The voltage ES leads ER by an angle  δ so that power flows from A to 
B during steady state. The relay under consideration is located at bus-bar-A end. The power angle curve is shown in Figure 
6. The system is operating at initial steady operating point A with Pmo as output power and δ0 as initial rotor angle[14-20]. 
From the power angle curve, initial rotor angle, 

 
Now, suppose, a self-clearing transient three phase short circuit fault occurs on the line. During the fault, the electrical 
output power Pe drops to zero. The resulting rotor acceleration advances rotor angle to δ1. After a time interval tcr, 

corresponding to angle δ, the fault is cleared and the operating point jumps back to the sinusoidal curve. Rotor angle 
correspond to this instant is δ1. As per equal area criteria, the rotor will swing up to maximum rotor angle δmax satisfying 
the following condition:  

Accelerating Area (A1) = Decelerating Area (A2) Rotor angle δ1corresponding to fault clearing time tcr can be computed 
by swing equation [20-21]. 

 
where H is the equivalent rotor angle inertia. 

During fault, Pe = 0, hence, 

 
On integrating both the sides with respect to variable t, 

 
Prior to fault δ0 is a stationary point. 

The initial condition of dδ/dt is specified as follows 

 
Integrating equation (19) and substituting δ = δ1 at time t = t1, with t1 - t2 = tcr, 

 
Thus, accelerating area A1 is given by, 
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Substituting in equation (21), 

 
Similarly, decelerating area, A2, can be calculated as follows. 

 
Since for a stable swing, A1 = A2 

 
Since δ0 is function of Pmo from equation (16) and δ1 is function of Pmo as well as tcr from equation (20), it follows from 
equation (25) that δmax depends on Pmo and tcr.  

 
The variation of δmax verses Pmo for different values of tcr is shown in Fig. 8.  

4.4 Determination of power swing locus  

A distance relay may classify power swing as a phase fault if impedance trajectory enters the operating characteristic of the 
relay. We will now derive the apparent impedance seen by the relay R on R-X plane. Again, consider simple two machine 
system connected by a transmission line of impedance ZL as shown in Fig. 1, where machine B is treated as reference [21-22].  

 
Now, impedance seen by relay is given by the following equation,  
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Assuming for simplicity, both the voltages as equal to 1pu, i.e. k=1,  

 
There is a geometrical interpretation of above equation. 

The vector component in equation (30) is a constant in R – X plane. The component  is a straight 

line, perpendicular to line segment . Thus, the trajectory of the impedance measured by relay during the power swing is 
a straight line as shown in Figure 8. The angle subtended by a point in the locus on S and R end points is angle δ. For 

simplicity, angle of  are considered identical. It intersects the line AB at midpoint, when δ = 180°. The 
corresponding point of intersection of swing impedance trajectory to the impedance line is known as electrical center of the 
swing in Fig. 8, where, the angle δ,  between two sources can be mapped graphically as the angle subtended by source 
points Es and Er on the swing trajectory. At the electrical center, angle between two sources is 180°. The existence of 
electrical center is an indication of system instability, the two generators now being out of step [17-21].   
 
If the power swing is stable, i.e. if the post fault system is stable, and then δmax will be less than 180° - δ. In such event, 
the power swing retraces its path at δmax. 

If  , then the power swing locus on the R – X is an arc of the circle. As shown in Figure 9.   
It can be easily shown that  
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It is also clear from Figure 8 and Figure 9, that the location of the electrical center is dependent upon the Es / Er ratio. 
Appearance of electrical center on a trans-mission line is a transient phenomenon. The voltage pro-file across the 
transmission at the point of occurrence of electrical center is shown in Figure 10.   
 
At the electrical center, the voltage is exactly zero. This means that relays at both the ends of line perceive it as a bolted 
three phase fault and immediately trip the line. Thus, we can conclude that existence of electrical center indicates (1) 
system instability (2) possibility of nuisance tripping of distance relay, as shown in Figure 10.  
 
Now consider a double-end-feed transmission line with three stepped distance protection schemes having Z1, Z2 and Z3 
protection zones as shown in Figure 11 and Figure 12. The mho relays are used and characteristics are plotted on R-X plane 
as shown in Figure 11. Swing impedance trajectory is also overlapped on relay characteristics for a simple case of equal 
end voltages (i.e. k = 1) and it is perpendicular to line AB.  
 
From Figure 11 and Figure 12, δz1, δz2 and δz3 are rotor angles when swing just enters the zone Z1, Z2 and Z3 
respectively and it can be obtained at the intersection of swing trajectory to the relay characteristics. Recalling δmax is the 
maximum rotor angle for stable power swing, following inferences can be drawn.  
 
If δmax < δz3, then the swing will not enter the relay characteristics. 
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If δz3 ≤ δmax ≤  δz2, the swing will enter in zone Z3. If it stays in zone - Z3 for larger interval than its TDS, then the relay 
will trip the line. 
If δz2 ≤ δmax ≤  δz1, the swing will enter in both the zones Z2 and Z3.  If it stays in zone 2, for larger interval than its TDS. 
If δmax ≥  δz1, the swing will enter in the zones Z1, Z2 and Z3 and operate zone 1 protection will operate without 
instantaneous delay.  

Evaluation of power swings on a multimachine system requires usage of transient stability program. Using transient 
stability program, post fault the relay end node voltage and line currents can be monitored and then the swing trajectory 
traced on impedance.  

4.5 OOS effect on distance function in IEDs  

OOS can affect the calculations of the load impedance in IEDs, where, at steady state conditions is not within the IED 
operating zone characteristic, to enter the calculations into the IEDs operating zone characteristic as show in Figure 13 
When impedance due to power swing matches with the operating impedance of the distance relay, it will send false tripping 
to the cut breaker. During OOS the IEDs may cause undesired tripping of OHTL or other power system elements, by 
weakening the system and possibly lead to cascading outages and the shutdown of major portions of the power system [23,24]. 
Figure 14 shows the three-phase current and voltage at OOS, so at the point of the voltage is low, the protection relay 
impedance calculation will sense this point as a fault in the system. 
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5. Distance function requirements in IEDs at OOS  
The operating characteristic of the distance protection is depending on the load impedance which related to voltage and 
current [25]. The numerical relays can adjust to sense the actual three phase fault and the OOS by the fast or gradual 
changing in the load impedance in the setting zone. Both faults and OOS may cause the measured apparent positive-
sequence impedance to enter into the operating characteristic of a distance relay element.   
 
In Figure 15, plot of the current and voltage over the entire 60 second at OOS. Because of the complexity and the rare 
occurrence of power system at OOS, many of utilities haven’t clear performance that requirement for distance IEDs during 
OOS [26]. So, the performances of distance elements at OOS conditions must be blocking the distance function in IEDs 
during stable power swings in the system. But the OST function should be considered to accomplish differentiation stable 
from unstable power swings, and separation to system areas at the predetermined network locations and at the appropriate 
source-voltage phase-angle difference between systems, in order to maintain power system stability and service continuity 
[14-26].  

5.1 Solution for Distance IEDs at OOS  

Using the advanced protection relays which called IEDs can absorb the OOS condition in the power system. In the last 
parts in this paper it is discussed the difference between the three-phase symmetrical fault and the stable swing in the power 
system. The duration changing in the system can to analyze to three phase fault which the load impedance is decreases very 
fast, and the three-phase swing, the load impedance is gradually changes to inter in the distance zone setting. By creating 
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new logic in the IEDs to block for the symmetrical three-phase fault distance protection function [24,27]. The new logic can 
to detect the OOS by adding new two zones greater than the bigger distance protection zone, where the stable swing will 
still between the two new zones for some cycle depend on the design system which can gradual change the load impedance 
from 3 cycles to 5 cycles[18-20]. Figure 16 shows the anew creating two zones over from the actual setting for tripping three-
phase fault. At the apparent load impedance still for the setting time between the outer new zone and the inner new zone, so 
the out of step blocking OSB element will activate to block the symmetrical three-phase fault to 2 seconds [26-28]. OST 
schemes require for tripping scheme to separate the power system at key locations to achieve a new steady-state operating 
condition. OST function will active at the unstable swing in the power system to isolate the two areas to prevent total black-
out [29-32].   

6. Experimental simulation using advanced protection relay 
The experimental can to simulate in the lab by using the numerical protection relay to simulate the symmetrical three phase 
fault and to create the new distance function to block the distance protection function at stable swing to prevent the false 
operation for the three-phase distance protection.  

6.1 Symmetrical Three-phase Simulation  

Figure 17shows the test simulation for three phase faults with IEDs which created by frejawin software to be uses with 
FREJA secondary injection Kit. This test applied by using a secondary injection kit type Freja300. The nominal operating 
voltage for this system is 132 kV. The voltage transformer ratio is 132/0.115 kV and the current transformer ratio is 1000/1 
Amps, the maximum load is 1000 Amps at a ±30-degree power factor. The Zone 1, Zone 2, Zone 4 and distance element 
reaches are set to be 85 %, 130% forward direction and Zone 4 adjusted by 120 % in reverse of the line impedance, 
respectively. This test simulated by a protection IEDs type RED670. Table 1 shows the result point sheet for the quadrature 
impedance results at three phase symmetrical fault simulation. 

Figure 17. Triple-phase distance simulation with advanced protection relay. 
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Figure 18. Test relay OOS function boundary graph for the 
inner zone 

Figure 19. Test relay OOS function boundary graph for 
the outer zone 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
6.2 Test the boundary new zones for OOS  
By using the Freja-win software can draw the new inner and outer zone that can to uses with the advanced relay to block 
the three-phase fault at the load impedance still in between the two new zones for 3 to 5 cycles. The secondary injection in 
this simulation is used the Freja 300 kit, this test applied on IEDs type RED670, this simulation for132 kV OHTL by a 
maximum load of 1000A. The voltage transformer ratio is 132/0.115 kV and the current transformer ratio is 1000/1A.  
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Figure 18 and Figure 19 show the test results which created by the software simulation and table (2) and table (3) include 
report results.   

7. Conclusion 

Out-of-step (OOS) condition in the power systems can to lead to false operation for the three-phase distance relay. The 
OOS condition is occurred at the un-equalized between mechanical torque for the generator and the electrical loads that 
leads to false trip for the OHTL elements. This paper introduces an overview of OOS, their causes, and optimum method 
for detecting the OOS. The detecting method for OOS in the system have been developed and elaborated. This paper shows 
the optimum solution for the numerical protection relay for detecting the OOS, this solution easy to prevent the false trip by 
creating new boundary two zones over from greater tipping zone, as detecting the load symmetrical impedance between 
new zones for a few cycles. This will lead to blocking for the symmetrical calculating zones by the time to return the stable 
swing in the grid which will prevent the separating grid or system black out that improve the power system quality. 
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