Hydrogen Embrittlement and Diffusion in High Strength Low Alloyed Steels with Different Microstructures

Marina Cabrini, Lorenzi Sergio, Pesenti Bucella Diego, Pastore Tommaso Tommaso


The paper deals with the effect of microstructure on the hydrogen diffusion in traditional ferritic-pearlitic HSLA steels and new high strength steels, with tempered martensite microstructures or banded ferritic-bainitic-martensitic microstructures. Diffusivity was correlated to the hydrogen embrittlement resistance of steels, evaluated by means of slow strain rate tests. 


Hydrogen embrittlement; Hydrogen diffusion; Stress Corrosion Cracking; HSLA steels

Full Text:



Shipilov, A. S.; May, I. L. Structural integrity of ag-ing buried pipelines having cathodic protection. En-gineering Failure Analysis, 2006; 13: 1159–76. https://doi.org/10.1016/j.engfailanal.2005.07.008

Shipilov, S. A. Critical assessment of the rule of ca-thodic protection in pipeline integrity and reliability. In: AL., F. P. E. Engineering structural integrity as-sessment: need and provision. Sheffield: EMAS, 2002. p. 155-62.

Beachem, C. D. A New Model for Hydrogen-Assisted Cracking (Hydrogen Embrittlement). Metallurgical Transactions 1972; 3: 437-51. https://doi.org/10.1007/BF02642048

Bernstein, M.; Thompson, A. W. Effect of Metallur-gical Variables on Environmental Fracture. Interna-tional Metal Review 1976; 21; 269-87.

Lynch, S. P. Mechanisms of Hydrogen Assisted Cracking - A review. In: MOODY, N. R., et al. Hy-drogen effects on Materials Behavior and Corrosion Deformation Interactions. [S.l.]: TMS (The Minerals, Metals and Materials Society) 2003; 1; 449-66.

Troiano, A. R. The role of hydrogen and other inter-stitials in the mechanical behaviour of metals. In: Trans. ASM 52 1960; 54-80.

Oriani, R. A. Mechanicistic Theory of Hydrogen Embrittlement of Steels. Berichte Der Bun-sen-Gesellschaft Fur Physikalische Chemie 1972; 76, (8) 848-57.

Ayas, C.; Deshpande, V. S.; Fleck, N. A. A fracture criterion for the notch strength of high strength steels in the presence of hydrogen. Journal of the Mechanics and Physics of Solids 2014; 63, 80-93. DOI: 10.1016/j.jmps.2013.10.002

Nagumo, M. Hydrogen related failure of steels – a new aspect. Materials Science and Technology 2004; 20 (8) 940-50. https://doi.org/10.1179/026708304225019687

Srinivasan, R.; Neeraj, T. Hydrogen Embrittlement of Ferritic Steels: Deformation and Failure Mecha-nisms and Challenges in the Oil and Gas Industry. JOM 2014; 66 (8) 1377-82. DOI: 10.1007/s11837-014-1054-4

Hirth, J. P. Effects of Hydrogen on the Properties of Iron and Steel. Metallurgical Transactions A 1980; 11a; 861-90. https://doi.org/10.1007/BF02654700

Wallaert, E. et al. TDS Evaluation of the Hydrogen Trapping Capacity of NbC Precipitates. In: Somerday, B. P.; Sofronis, P. International Hydro-gen Conference (IHC 2012): Hydrogen-Materials Interactions 2014; Chapter 62.

Cabrini, M.; Lorenzi, S. Pipeline Steels: Hydrogen Diffusion and Environmentally Assisted Cracking. In: Encyclopedia of Iron, Steel, and Their Alloys (a cura di): George E. Totten Rafael Colas. [S.l.]: Tay-lor and Francis, 2016. p. 2547-2599.

Hardie, D.; Charles, E. A.; Lopez, A. H., Hydrogen embrittlement of high strength pipeline steels. Cor-rosion Science 2006; 48 (12) 4378-85. DOI: 10.1016/j.corsci.2006.02.011

Sandoz, G. A unified theory for some effects of hydrogen source, alloying elements, and potential on crack growth in martensitic AISI 4340 steel. Metallurgical Transactions 1972; 3 (5); 1169-76. https://doi.org/10.1007/BF02642449

Farrell, K.; Quarrell, A. G. Hydrogen embrittlement of an ultra-high-tensile steel. Journal of Iron and Steel Institute 1964; 202; 1002-11.

Demofonti, G., Spinelli C.M., Marchesani. F., et al., Eni TAP Project mechanical damage and Environ-mental Assisted Cracking - Full scale methodology overview. Proc. Int. Conf. New Developments on Metallurgy and Applications of High Strength Steels. Buenos Aires, 2008. https://www.phase-trans.msm.cam.ac.uk/2005/LINK/186.pdf

Jin, T. Y.; Liu, Z. Y.; Cheng, Y. F. Effect of non-metallic inclusions on hydrogen-induced cracking of API5L X100 steel. International Journal of Hydrogen Energy 2010; 35; 8014-21. 10.1016/j.ijhydene.2010.05.089

Corbett, K. T.; Bowen, R. R.; Petersen, C. W. High strength steel pipeline economics. International Journal of Offshore and Polar Engineering 2004; 14; 75-79.

Glover, A. Et al. Design Application and Installation of an API5L X100 pipeline, 2003. Proc. of the 22nd International Conference on Offshore Mechanics and Arctic Engineering, OMAE2003. Cancun, Mexico; American Society of Mechanical Engineers. 2003. p. 37429.

Cabrini, M., Lorenzi, S., Pellegrini, S. et al. Envi-ronmentally assisted cracking and hydrogen diffu-sion in traditional and high-strength pipeline steels. Corrosion Reviews 2015; 33 (6); 529-45. DOI 10.1515/corrrev-2015-0051

Carter, C. S.; Hyatt, M. V. Review of Stress Corro-sion Cracking in Low Alloy Steels with Yield Strength Below 150 ksi. In: Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys. Houston: NACE, 1977. p. 524-600.

Kim, J. S., Lee H.Y., Lee D.I., et al. Effect of inter-granular ferrite on hydrogen delayed fracture re-sistance of ultrahigh strength boron-added steel. ISIJ (The Iron and Steel Institute of Japan) Interna-tional 2007; 47, 913-19. https://www.phase-trans.msm.cam.ac.uk/2005/LINK/66.pdf

Ham, J. O.; Kim, B. G.; Lee, S. H. Measurement method of sensitivity for hydrogen embrittlement of high strength bolts. Korean Journal of Metals and Materials 2011; 49; 1-8.

Arafin, M.; Szpunar, J. Effect of bainitic micro-structure on the susceptibility of pipeline steels to hydrogen induced cracking. Materials Science and Engineering A 2011; 528 (15); pp. 4927-4940.

Razzini, G., Cabrini, M. Maffi, S. et al. Effect of Heat-Affected Zones on Hydrogen Permeation and Embrittlement of Low Carbon Steels. Materials Science Forum 1988, 289-292, 1257-66.

Ha, H.; Ai, J.; Scully, J. Effects of Prior Cold Work on Hydrogen Trapping and Diffusion in API X-70 Line Pipe Steel During Electrochemical Charging. Corrosion 2014; 70(2); pp. 166-184.

Punter, A.; Fikkers, A. T.; Vanstaen, G. Hydrogen- Induced Stress Corrosion Cracking on a Pipeline. Materials Performance 1992; 31; 24-28.

Cabrini M, Lorenzi, S. Marcassoli, P., et al. Effetto della diffusione dell’idrogeno sui fenomeni di EAC di acciai per pipeline in condizioni di protezione catodica. La Metallurgia Italiana 2008; 2; 15-22.

Cabrini, M., Pistone, V., Sinigaglia, E., et al. Unique Hsc Scenario Leads To Gas Line Failure. Oil & Gas Journal 2006; 6; 61-65. https://www.ogj.com/articles/print/volume-98/issue-10/in-this-issue/pipeline/unique-hsc-scenario-leads-to-gas-line-failure.html

Fassina, P., Brunella, M., Lazzari, L., et al. Effect of hydrogen and low temperature on fatigue crack growth of pipeline steels," Engineering Fracture Mechanics 2013; 103; pp. 10-25.

Baxter, D. P.; Maddox, S. J.; Pargeter, R. J. Corro-sion fatigue behaviour of welded risers and pipe-lines. 26th International Conference on Offshore Mechanics and Arctic Engineering, OMAE 2007. San Diego, California, 2007; Paper no. 29360.

Hu, H.; Akid, R. A Comparison of Short Fatigue Crack Growth (SFCG) rates in a Medium Strength Steel, under in-air and Corrosion Fatigue loading conditions. In: MOODY, N. R., et al. Hydrogen ef-fects on Materials Behavior and Corrosion Defor-mation Interactions; TMS (The Minerals, Metals and Materials Society), v. 1, 2003. 617-627.

Payer, J. H.; Berry, W. E.; Boyd, W. K. Constant strain rate technique for assessing stress-corrosion susceptibility. Stress corrosion – new approaches. In: ASTM STP 610. Philadelphia: ASTM; 1976. p. 82–93.

Kasahara, K.; Isowaki, T.; Adachi, H. Study on hydrogen-stress cracking susceptibilities of line pipe steels. Frankfurt/Main: Dechema1; 1981; 394–399.

Hinton, B. R. W.; Procter, R. P. M. The effect of strain-rate and cathodic potential on the tensile ductility of X-65 pipeline steel. Corrosion Science 1983; 23 (2); 101–23. https://doi.org/10.1016/0010-938X(83)90110-5

Punter, A.; Fikkers, A. T.; Vanstaen, G. Hydrogen induced stress corrosion cracking of the R.A.P.L. oil transmission pipeline as a result of the combined effect of cathodic protection and plastic deformation. Proceedings of the 9th international pipe protection conference. London: Elsevier. 1991. p. 257–269.

Rebak, R.B., Xia, Z. Safruddin, R., et al. Effect of Solution Composition and Electrochemical Poten-tial on Stress Corrosion Cracking of X-52 Pipeline Steel. Corrosion 1996; 52; 396–405. https://doi.org/10.5006/1.3292126

Gu, B., Yu, W. Z., Luo, J.L., et al. Transgranular Stress Corrosion Cracking of X-80 and X-52 Pipe-line Steels in Dilute Aqueous Solution with Near-Neutral pH. Corrosion 1999; 55 (3); 312-8. https://doi.org/10.5006/1.3283993

Trasatti, S. P., Sivieri, E., Mazza, F. Susceptibility of a X80 steel to hydrogen, Materials and Corrosion 2005; 56 (2) 111-7. https://doi.org/10.1002/maco.200403821

Zielinski, A.; Domzalicki, P. Hydrogen degradation of high-strength low-alloyed steels. Journal of Ma-terials Processing Technology 2003; 133 (1-2); 230-5. https://doi.org/10.1016/S0924-0136(02)00239-X

Dong, C.F., Liu, Z.Y., Li, X.G., et al. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking. Inter-national Journal of Hydrogen Energy 2009; 34; 9879-84.

Bosch, C., Bayle, B., Magnin, T., et al. Proposal for a critical test to classify the SCC resistance of mate-rials. In: AL., M. N. E. Hydrogen effects on materi-al behavior and corrosion deformation interactions. Warrendale: TMS, 2003. p. 587-596.

Haq, A., Muzaka, K., Dunne, D., et al. Effect of microstructure and composition on hydrogen per-mea tion in X70 pipeline steels," International Journal of Hydrogen Energy 2013; 38(5); pp. 2544-2556.

Cogliati, O.; Cabrini, M. Effetto della microstrut-tura sulla diffusione dell'idrogeno in acciai al car-bonio per pipeline. La Metallurgia Italiana 2003; 3; 13-20.

Cabrini, M.; Maffi, S.; Razzini, G. Evaluation of Hydrogen embrittlement behaviour by means per-meation current measure in slow strain rate condi-tions of a micro-alloyed steel. In: Bonora, P.; Deflo-rian, F. Electrochemical Methods In Corrosion Re-search Vi Pts 1 And 2 Book. Materials Science Fo-rum. Zurich-Uetikon:Transtec Publications LTD, v. 289-292, 1998. p. 1245-1256.

Cabrini, M.; Razzini, G.; Tarenzi, M. Hydrogen Permeation and Embrittlement of a Low Alloyed Steel. In: Proceedings of NACE International Con-ference “Corrosion in Natural and Industrial Envi-ronments: problems and solutions”. Grado (Gorizia), 1995. p. 325-333.

Zucchi, F., Grassi, V., Frignani, A., et al. Influenza degli ioni solfuro sulla permeazione di idrogeno in acciai ad alta resistenza. Atti del Convegno Na-zionale AIM. Vicenza: AIM. 2004. p. CD-ROM.

Devanathan, M.; Stachurski, Z. The adsorption and diffusion of electrolytic hydrogen in palladium. Proc Royal Society London. Series A, Mathematical and Physical Sciences; 1962; 90-102.

Cabrini, M., Lorenzi, S., Pesenti Bucella, D., et al. Effetto del carico ciclico sulla diffusione di idrogeno in acciai basso-legati. La Metallurgia Ital-iana 2018; 110(10); pp. 26-31.

Mcbreen, J.; Nonis, L.; Beck, W. A Method for Determination of the Permeation Rate of Hydrogen Through Metal Membranes. Journal of Electro-chemical Society 1966; 113 (11); 1218-22. doi: 10.1149/1.3087209

Tau, L.; Chan, S. L. I. Effects of ferrite/pearlite alignment on the hydrogen permeation in a AISI 4130 steel. Materials Letters 1996; 29, (1-3); 143-7; https://doi.org/10.1016/S0167-577X(96)00140-1.

Luu, W. C.; Wu, J. K. The influence of microstruc-ture on hydrogen transport in carbon steels. Corro-sion Science 1996; 38 (2) 239-45. https://doi.org/10.1016/0010-938X(96)00109-6

Cabrini, M., Lorenzi., S. Marcassoli, P., et al. Hy-drogen embrittlement behavior of HSLA line pipe steel under cathodic protection. Corrosion Reviews 2011; 29; 261-70. DOI 10.1515/corrrev-2015-0051

DOI: http://dx.doi.org/10.18282/ims.v2i1.182


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.