Hydrogen Embrittlement and Diffusion in High Strength Low Alloyed Steels with Different Microstructures

Marina Cabrini


The paper deals with the effect of microstructure on the hydrogen diffusion in traditional ferritic-pearlitic HSLA steels and new high strength steels, with tempered martensite microstructures or banded ferritic-bainitic-martensitic microstructures. Diffusivity was correlated to the hydrogen embrittlement resistance of steels, evaluated by means of slow strain rate tests. 


Hydrogen embrittlement; Hydrogen diffusion; Stress Corrosion Cracking; HSLA steels

Full Text:



Shipilov, A. S.; May, I. L. Structural integrity of ag-ing buried pipelines having cathodic protection. En-gineering Failure Analysis, 2006; 13: 1159–76. https://doi.org/10.1016/j.engfailanal.2005.07.008

Shipilov, S. A. Critical assessment of the rule of ca-thodic protection in pipeline integrity and reliability. In: AL., F. P. E. Engineering structural integrity as-sessment: need and provision. Sheffield: EMAS, 2002. p. 155-62.

Beachem, C. D. A New Model for Hydrogen-Assisted Cracking (Hydrogen Embrittlement). Metallurgical Transactions 1972; 3: 437-51. https://doi.org/10.1007/BF02642048

Bernstein, M.; Thompson, A. W. Effect of Metallur-gical Variables on Environmental Fracture. Interna-tional Metal Review 1976; 21; 269-87.

Lynch, S. P. Mechanisms of Hydrogen Assisted Cracking - A review. In: MOODY, N. R., et al. Hy-drogen effects on Materials Behavior and Corrosion Deformation Interactions. [S.l.]: TMS (The Minerals, Metals and Materials Society) 2003; 1; 449-66.

Troiano, A. R. The role of hydrogen and other inter-stitials in the mechanical behaviour of metals. In: Trans. ASM 52 1960; 54-80.

Oriani, R. A. Mechanicistic Theory of Hydrogen Embrittlement of Steels. Berichte Der Bun-sen-Gesellschaft Fur Physikalische Chemie 1972; 76, (8) 848-57.

Ayas, C.; Deshpande, V. S.; Fleck, N. A. A fracture criterion for the notch strength of high strength steels in the presence of hydrogen. Journal of the Mechanics and Physics of Solids 2014; 63, 80-93. DOI: 10.1016/j.jmps.2013.10.002

Nagumo, M. Hydrogen related failure of steels – a new aspect. Materials Science and Technology 2004; 20 (8) 940-50. https://doi.org/10.1179/026708304225019687

Srinivasan, R.; Neeraj, T. Hydrogen Embrittlement of Ferritic Steels: Deformation and Failure Mecha-nisms and Challenges in the Oil and Gas Industry. JOM 2014; 66 (8) 1377-82. DOI: 10.1007/s11837-014-1054-4

Hirth, J. P. Effects of Hydrogen on the Properties of Iron and Steel. Metallurgical Transactions A 1980; 11a; 861-90. https://doi.org/10.1007/BF02654700

Wallaert, E. et al. TDS Evaluation of the Hydrogen Trapping Capacity of NbC Precipitates. In: Somerday, B. P.; Sofronis, P. International Hydro-gen Conference (IHC 2012): Hydrogen-Materials Interactions 2014; Chapter 62.

Cabrini, M.; Lorenzi, S. Pipeline Steels: Hydrogen Diffusion and Environmentally Assisted Cracking. In: Encyclopedia of Iron, Steel, and Their Alloys (a cura di): George E. Totten Rafael Colas. [S.l.]: Tay-lor and Francis, 2016. p. 2547-2599.

Hardie, D.; Charles, E. A.; Lopez, A. H., Hydrogen embrittlement of high strength pipeline steels. Cor-rosion Science 2006; 48 (12) 4378-85. DOI: 10.1016/j.corsci.2006.02.011

Sandoz, G. A unified theory for some effects of hydrogen source, alloying elements, and potential on crack growth in martensitic AISI 4340 steel. Metallurgical Transactions 1972; 3 (5); 1169-76. https://doi.org/10.1007/BF02642449

Farrell, K.; Quarrell, A. G. Hydrogen embrittlement of an ultra-high-tensile steel. Journal of Iron and Steel Institute 1964; 202; 1002-11.

Demofonti, G., Spinelli C.M., Marchesani. F., et al., Eni TAP Project mechanical damage and Environ-mental Assisted Cracking - Full scale methodology overview. Proc. Int. Conf. New Developments on Metallurgy and Applications of High Strength Steels. Buenos Aires, 2008. https://www.phase-trans.msm.cam.ac.uk/2005/LINK/186.pdf

Jin, T. Y.; Liu, Z. Y.; Cheng, Y. F. Effect of non-metallic inclusions on hydrogen-induced cracking of API5L X100 steel. International Journal of Hydrogen Energy 2010; 35; 8014-21. 10.1016/j.ijhydene.2010.05.089

Corbett, K. T.; Bowen, R. R.; Petersen, C. W. High strength steel pipeline economics. International Journal of Offshore and Polar Engineering 2004; 14; 75-79.

Glover, A. Et al. Design Application and Installation of an API5L X100 pipeline, 2003. Proc. of the 22nd International Conference on Offshore Mechanics and Arctic Engineering, OMAE2003. Cancun, Mexico; American Society of Mechanical Engineers. 2003. p. 37429.

Cabrini, M., Lorenzi, S., Pellegrini, S. et al. Envi-ronmentally assisted cracking and hydrogen diffu-sion in traditional and high-strength pipeline steels. Corrosion Reviews 2015; 33 (6); 529-45. DOI 10.1515/corrrev-2015-0051

Carter, C. S.; Hyatt, M. V. Review of Stress Corro-sion Cracking in Low Alloy Steels with Yield Strength Below 150 ksi. In: Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys. Houston: NACE, 1977. p. 524-600.

Kim, J. S., Lee H.Y., Lee D.I., et al. Effect of inter-granular ferrite on hydrogen delayed fracture re-sistance of ultrahigh strength boron-added steel. ISIJ (The Iron and Steel Institute of Japan) Interna-tional 2007; 47, 913-19. https://www.phase-trans.msm.cam.ac.uk/2005/LINK/66.pdf

Ham, J. O.; Kim, B. G.; Lee, S. H. Measurement method of sensitivity for hydrogen embrittlement of high strength bolts. Korean Journal of Metals and Materials 2011; 49; 1-8.

Arafin, M.; Szpunar, J. Effect of bainitic micro-structure on the susceptibility of pipeline steels to hydrogen induced cracking. Materials Science and Engineering A 2011; 528 (15); pp. 4927-4940.

Razzini, G., Cabrini, M. Maffi, S. et al. Effect of Heat-Affected Zones on Hydrogen Permeation and Embrittlement of Low Carbon Steels. Materials Science Forum 1988, 289-292, 1257-66.

Ha, H.; Ai, J.; Scully, J. Effects of Prior Cold Work on Hydrogen Trapping and Diffusion in API X-70 Line Pipe Steel During Electrochemical Charging. Corrosion 2014; 70(2); pp. 166-184.

Punter, A.; Fikkers, A. T.; Vanstaen, G. Hydrogen- Induced Stress Corrosion Cracking on a Pipeline. Materials Performance 1992; 31; 24-28.

Cabrini M, Lorenzi, S. Marcassoli, P., et al. Effetto della diffusione dell’idrogeno sui fenomeni di EAC di acciai per pipeline in condizioni di protezione catodica. La Metallurgia Italiana 2008; 2; 15-22.

Cabrini, M., Pistone, V., Sinigaglia, E., et al. Unique Hsc Scenario Leads To Gas Line Failure. Oil & Gas Journal 2006; 6; 61-65. https://www.ogj.com/articles/print/volume-98/issue-10/in-this-issue/pipeline/unique-hsc-scenario-leads-to-gas-line-failure.html

Fassina, P., Brunella, M., Lazzari, L., et al. Effect of hydrogen and low temperature on fatigue crack growth of pipeline steels," Engineering Fracture Mechanics 2013; 103; pp. 10-25.

Baxter, D. P.; Maddox, S. J.; Pargeter, R. J. Corro-sion fatigue behaviour of welded risers and pipe-lines. 26th International Conference on Offshore Mechanics and Arctic Engineering, OMAE 2007. San Diego, California, 2007; Paper no. 29360.

Hu, H.; Akid, R. A Comparison of Short Fatigue Crack Growth (SFCG) rates in a Medium Strength Steel, under in-air and Corrosion Fatigue loading conditions. In: MOODY, N. R., et al. Hydrogen ef-fects on Materials Behavior and Corrosion Defor-mation Interactions; TMS (The Minerals, Metals and Materials Society), v. 1, 2003. 617-627.

Payer, J. H.; Berry, W. E.; Boyd, W. K. Constant strain rate technique for assessing stress-corrosion susceptibility. Stress corrosion – new approaches. In: ASTM STP 610. Philadelphia: ASTM; 1976. p. 82–93.

Kasahara, K.; Isowaki, T.; Adachi, H. Study on hydrogen-stress cracking susceptibilities of line pipe steels. Frankfurt/Main: Dechema1; 1981; 394–399.

Hinton, B. R. W.; Procter, R. P. M. The effect of strain-rate and cathodic potential on the tensile ductility of X-65 pipeline steel. Corrosion Science 1983; 23 (2); 101–23. https://doi.org/10.1016/0010-938X(83)90110-5

Punter, A.; Fikkers, A. T.; Vanstaen, G. Hydrogen induced stress corrosion cracking of the R.A.P.L. oil transmission pipeline as a result of the combined effect of cathodic protection and plastic deformation. Proceedings of the 9th international pipe protection conference. London: Elsevier. 1991. p. 257–269.

Rebak, R.B., Xia, Z. Safruddin, R., et al. Effect of Solution Composition and Electrochemical Poten-tial on Stress Corrosion Cracking of X-52 Pipeline Steel. Corrosion 1996; 52; 396–405. https://doi.org/10.5006/1.3292126

Gu, B., Yu, W. Z., Luo, J.L., et al. Transgranular Stress Corrosion Cracking of X-80 and X-52 Pipe-line Steels in Dilute Aqueous Solution with Near-Neutral pH. Corrosion 1999; 55 (3); 312-8. https://doi.org/10.5006/1.3283993

Trasatti, S. P., Sivieri, E., Mazza, F. Susceptibility of a X80 steel to hydrogen, Materials and Corrosion 2005; 56 (2) 111-7. https://doi.org/10.1002/maco.200403821

Zielinski, A.; Domzalicki, P. Hydrogen degradation of high-strength low-alloyed steels. Journal of Ma-terials Processing Technology 2003; 133 (1-2); 230-5. https://doi.org/10.1016/S0924-0136(02)00239-X

Dong, C.F., Liu, Z.Y., Li, X.G., et al. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking. Inter-national Journal of Hydrogen Energy 2009; 34; 9879-84.

Bosch, C., Bayle, B., Magnin, T., et al. Proposal for a critical test to classify the SCC resistance of mate-rials. In: AL., M. N. E. Hydrogen effects on materi-al behavior and corrosion deformation interactions. Warrendale: TMS, 2003. p. 587-596.

Haq, A., Muzaka, K., Dunne, D., et al. Effect of microstructure and composition on hydrogen per-mea tion in X70 pipeline steels," International Journal of Hydrogen Energy 2013; 38(5); pp. 2544-2556.

Cogliati, O.; Cabrini, M. Effetto della microstrut-tura sulla diffusione dell'idrogeno in acciai al car-bonio per pipeline. La Metallurgia Italiana 2003; 3; 13-20.

Cabrini, M.; Maffi, S.; Razzini, G. Evaluation of Hydrogen embrittlement behaviour by means per-meation current measure in slow strain rate condi-tions of a micro-alloyed steel. In: Bonora, P.; Deflo-rian, F. Electrochemical Methods In Corrosion Re-search Vi Pts 1 And 2 Book. Materials Science Fo-rum. Zurich-Uetikon:Transtec Publications LTD, v. 289-292, 1998. p. 1245-1256.

Cabrini, M.; Razzini, G.; Tarenzi, M. Hydrogen Permeation and Embrittlement of a Low Alloyed Steel. In: Proceedings of NACE International Con-ference “Corrosion in Natural and Industrial Envi-ronments: problems and solutions”. Grado (Gorizia), 1995. p. 325-333.

Zucchi, F., Grassi, V., Frignani, A., et al. Influenza degli ioni solfuro sulla permeazione di idrogeno in acciai ad alta resistenza. Atti del Convegno Na-zionale AIM. Vicenza: AIM. 2004. p. CD-ROM.

Devanathan, M.; Stachurski, Z. The adsorption and diffusion of electrolytic hydrogen in palladium. Proc Royal Society London. Series A, Mathematical and Physical Sciences; 1962; 90-102.

Cabrini, M., Lorenzi, S., Pesenti Bucella, D., et al. Effetto del carico ciclico sulla diffusione di idrogeno in acciai basso-legati. La Metallurgia Ital-iana 2018; 110(10); pp. 26-31.

Mcbreen, J.; Nonis, L.; Beck, W. A Method for Determination of the Permeation Rate of Hydrogen Through Metal Membranes. Journal of Electro-chemical Society 1966; 113 (11); 1218-22. doi: 10.1149/1.3087209

Tau, L.; Chan, S. L. I. Effects of ferrite/pearlite alignment on the hydrogen permeation in a AISI 4130 steel. Materials Letters 1996; 29, (1-3); 143-7; https://doi.org/10.1016/S0167-577X(96)00140-1.

Luu, W. C.; Wu, J. K. The influence of microstruc-ture on hydrogen transport in carbon steels. Corro-sion Science 1996; 38 (2) 239-45. https://doi.org/10.1016/0010-938X(96)00109-6

Cabrini, M., Lorenzi., S. Marcassoli, P., et al. Hy-drogen embrittlement behavior of HSLA line pipe steel under cathodic protection. Corrosion Reviews 2011; 29; 261-70. DOI 10.1515/corrrev-2015-0051

DOI: http://dx.doi.org/10.18282/ims.v2i1.182


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.