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Abstract: Aiming at the optimization of the supporting solution for molten steel "deoxidation alloying", the cost of
"deoxidation alloying" is minimized from an economic perspective. Using Excel, Eviews and spss software
programming, through factor analysis, clustering dimension reduction, principal component analysis Multiple linear
regression analysis and linear programming optimization analysis, the author found out the main factors that affected
the yield of alloy elements. This paper establishes a multiple linear regression mathematical model that affects the main
factors of alloy elements and yield. According to the reference alloy price, the linear programming model is adopted to
find the optimal solution of alloy ingredients.
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China Steel Association expects that China's steel
demand will be 890 million tons in 2020, increasing 2%
year-on-year. In 2020, supply contraction may be greater
than demand contraction, which forms a better support
for the steel markets. Optimization research of
deoxidation alloying is crucial. For different steel types,
different types and amounts of alloys are added at the
end of melting to make the elements of the alloy reach
the standard. The finished steel meets certain standards
and requirements in some physical properties. Reducing
production costs is a key factor for iron and steel
enterprises to improve their competitiveness. Therefore,
the optimization of the deoxidation alloying process
has become a key research issue for relevant personnel.
This paper intends to establish relevant mathematical
models for the deoxidation alloying link through
historical data, optimize the number and type of alloys

And ensure the maximum production cost of alloys while
ensuring that the molten steel meets the standards[1].

1. Related research
Steel is the foundation of industrial production, and

economists usually use steel output as one of the
important indicators to measure the economic strength of
a country. Therefore, the research of smelting steel by
relevant personnel is quite rich. Fang Yue and Gao Zhen
obtained the influencing factors of the element yield
during the "deoxidation alloying" process of iron and
steel through principal component analysis[2]. Cheng
Ruonan, Wang Ruimei, et al. used the Pearson
correlation coefficient to study the relationship between
different related factors and element yields, and used
neural networks to predict element yields, and reduced
the cost of alloy ingredients by establishing multivariate
linear programming[3].
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2. Research on influencing factors
of element yield
2.1 Research ideas

In this paper, based on the historical data of the
Mathhorcup D question of steel deoxidation alloying
ingredients optimization in 2019, the element yield is
calculated by the element yield calculation formula, and
the influencing factors are obtained through the principal
component analysis.

2.2 Calculation of element yield and analysis
of influencing factors
2.2.1 Calculation of element yield
2.2.1.1 Modeling ideas

According to the historical data of Annex I of
Mathhorcup D in 2019 and the description of commonly
used alloy compositions in Annex II, through the element
yield calculation formula: element yield = (mass of alloy

elements into steel / total mass of alloy elements added)
× 100%.

Among them, the quality of the alloy elements
entering the steel is related to the continuous casting
positive sample, the converter end point, the molten steel
quality and the total alloy mass, that is, the quality of the
alloy elements entering the steel = (molten steel quality +
alloy total mass) * continuous casting positive
sample-converter end point * Quality of molten steel; the
total mass of alloy elements added is related to the mass
of each alloy and the content of elements in each alloy,
for example: the amount of C element added = ∑
(Malloy*WC).

2.2.1.2 Model solution

Using excel software, according to the definition of
the yield rate of the two elements C and Mn, the specific
historical yield rate of the two elements C and Mn is
calculated.

Heat

number

C element

yield rate

Mn element

yield rate

Heat

number

C element

yield rate

Mn element

yield rate

7A06267 0.990459628 0.999948679 7A06555 0.864667944 0.525947201

7A06341 0.897526848 0.999887696 7A06301 0.869129409 0.522311972

7A06274 0.912306765 0.999649762 7A06443 0.886713661 0.5078459

7A06132 0.951261368 0.999347456 7A06296 0.902594353 0.506947012

7A06610 0.932282571 0.999071351 7A06744 0.752114961 0.469346953

Table 1. Partial historical yield rates of C and Mn elements

2.2.2 Influencing factors of element yield
2.2.2.1 Modeling ideas

First of all, data processing is performed to remove
386 samples of the wrong yield rate obtained from the
previous question from the 810 yield rate samples; then
424 samples of the reliable yield rate in the last step are
re-acquired; SPSS software is adopted to perform factor
analysis. Through dimensionality reduction and principal
component analysis, the main factors affecting the yield
of C and Mn elements can be found out.

2.2.2.2 Establishment of the model

There are n cases, with p indicators observed in
each case. There is a strong correlation between the p
indicators. In the future, it is easy to study, standardize
the sample observation data, so that the average value of

the variable after the standard dialect is 0, and the
variance is 1. Here, the original variable and the
normalized variable vector are represented by X, and F1,
F2, ..., Fm (m < p) represents the standardized common
factor.

The factor model is:

The matrix form of the factor model is: X = AF + ξ
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Where F is the main factor, ξ is the special factor,
and A is the factor loading matrix.

After obtaining the factor model, since its public
factors may not necessarily reflect the essential
characteristics of the problem, it is better to explain the
actual meaning of each public factor in the future and

reduce the subjectivity of the explanation. The matrix
form of the rotated factor model is: X = A1F'+ ξ (F' is the
rotation matrix)

Factor score: Factor analysis is to express the
variable as a linear combination of public factors. At this
time, the public factor can also be expressed as a linear
combination of variables, which is the factor score
coefficient, as follows:

Fj = βj1X1 + βj2X2 +… + βjpXp (j = 1,2,…, m)
Where βjp is the score of the jth common factor on

the pth original variable.

2.2.2.3 Solving the model

It can be seen from the matrix of correlation
coefficients of the initial variables that the correlation
coefficients among multiple variables are larger, and the
corresponding significance is generally smaller, and the
significance is less than 0.05, which is necessary for
factor analysis.

KMO sampling suitability measure .542

Bartlett sphericity test Approximate chi-square 429.909

Degrees of freedom 36

Distinctiveness .000

Table 2. KMO and Bartlett inspection table

Table 2 shows the KMO test and the spherical
Bartlett test table. It is generally considered that KMO
statistics greater than 0.5 are acceptable. In this case,
KMO statistics are 0.542, which is acceptable. The
significance of Bartlett's test is 0.000, which is less than

0.01, showing that there is a significant
correlation between various variables, that is, the null
hypothesis that the correlation matrix is rejected as the
unit matrix.

Figure 1. Gravel.

Figure 2 is a gravel chart regarding initial
eigenvalues (variance contribution rate). Observation

shows that the declining trend of the eigenvalue after the
fourth public factor accelerates, so it is more appropriate
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to select 4 public factors.

Ingredient

1 2 3 4

Converter end temperature -.141 .356 .323 .444

Converter end point C -.514 .000 .159 .005

Converter end point Mn -.110 .458 .026 -.220

Converter end point S .172 -.045 -.225 .528

Converter end point P .147 .548 -.115 .089

Converter end point Si .116 .003 -.057 -.480

Net weight of molten steel -.137 -.055 .591 -.113

C element yield .063 .009 .450 .046

Amount of added C element .424 .017 .057 -.054

Table 3. Matrix table of component score coefficients

Table 3 is the matrix of factor score system, from
which the final factor score formula can be known as:

F1 = -0.141 × converter end temperature-0.514
× converter end point C－0.11 × converter end point
Mn + 0.172 × converter end point S + 0.147 ×

converter end point P + 0.116 × converter end point Si
－0.137 × molten steel net weight + 0.063 × C Rate
+ 0.424 × amount of added C element;

F2 = 0.356 × converter end temperature + 0.458
× converter end point Mn－0.045 × converter end
point S ＋ 0.548 × converter end point P ＋ 0.003
× converter end point Si－0.055 × molten steel net
weight + 0.009 × C element yield + 0.017 × add The
amount of C element;

F3 = 0.323 × converter end temperature + 0.159 ×
converter end C + …… + 0.057 × added amount of C
element;

F4 = 0.444 × converter end temperature + 0.005
× converter end C + …… －0.054 × the amount of
added C element.

In order to study the total utility, the scores of the
four common factors can be weighted and summed, and
the weight is the variance contribution rate
corresponding to the common factors. In this example,
the variance contribution rate is used as the value. The
variance contribution rates of the four rotated common
factors are 22.262%, 17.652%, 16.754%, and 14.456%,
so the total score formula is: ZF = 22.262% × F1 +
17.652 % × F2 + 16.754% × F3 + 14.456% × F4.

The final calculation result is as follows: ZFC =

0.14975176 × converter end temperature-0.08706502
× converter end point C + 0.0289108 × converter end
point Mn + 0.06897842 × converter end point S +
0.12305684 × converter end point P－0.0525851 ×

converter end point Si + 0.04247332 × molten steel net
weight + 0.0976565 × C element yield + 0.09913526 × C
element added.

Similarly, the final calculation score formula of Mn
is: ZFMn = 0.19023095 × the amount of added Mn
element + 0.22484376 × net weight of molten steel +
0.15732321 × the yield of Mn element + 0.07825331 ×
converter end point P + 0.09742162 × converter end
temperature-0.14924826 × Converter end point S +
0.1405504 × converter end point Mn-0.0064781 ×
converter end point Si + 0.11916059 × converter end
point C

From the results of SPSS analysis, it is concluded
that the order of influencing factors affecting the yield of
element C of the alloy is: (1) converter end temperature;
(2) converter end P; (3) amount of added C element; (4)
converter end C; (5) converter end S; (6) Si at the end of
the converter; (7) Net weight of molten steel; (8) Mn at
the end of the converter.

The order of influence of the factors affecting the
yield of alloy Mn elements is as follows: (1) net weight
of molten steel; (2) added Mn element; (3) converter end
point S; (4) converter end point Mn; (5) converter end
point C; (6) converter end point temperature; (7)
converter end point P; (8) End point of converter Si.
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3. Prediction of element yield and
improvement of the model
3.1 Research ideas

Predict the yield of alloying elements C and Mn:
find the relationship between the yields of alloying
elements C and Mn and their impact factors, using the
four impact factors ranked in the top four as variables,
using Eviews software for multiple linear regression
analysis; use these two models to predict the yield of
alloying elements C and Mn.

To further improve the prediction model, Excel's
trend line function is used to derive a variety of
functional relationships; the F test and t test are adopted
to continuously filter out the variables that do not meet
the requirements; finally the optimal model is obtained to
improve its prediction accuracy .

3.2 Prediction of element yield rate-multiple
linear regression model
3.2.1 Model establishment

The yield of alloy element C: ηc = C + a1 ∗ x1 +
a2 ∗ x2 + a3 ∗ x3 + a4 ∗ x4

Among them, X1: converter end temperature; X2:
converter end point C; X3: converter end point P; X4:
added C amount; a1, a2, a3, a4 are coefficients.

Yield of alloying element Mn: ηMn = Mn + a5 ∗
x5 + a6 ∗ x6 + a7 ∗ x7 + a8 ∗ x8

Among them, X5: the amount of Mn added; X6: net
weight of molten steel; X7: converter end point S; X8:
converter end point Mn; a5, a6, a7, a8 as coefficient.

3.2.2 Solving the model
3.2.2.1 Prediction model of alloy element C

η� = 0.571724 + 0.0000143 ∗ �1 + 63.93576 ∗ �2
− 109.0404 ∗ �3 + 0.002485 ∗ �4

S.E=0.056403 means that the average error between
the actual observation point of the alloy element C yield
and its estimated value is 0.056403, and the error is less,
indicating that the model is well established.

Perform the F test and t test at the 5% significance
level:

F inspection: F=19.69457>F0.05(4,419)≈2
t test:  t(â1)  =  1.377168  >t0.025(419)≈0.9;

t(â2)=1.729304> t0.025(419)≈0.9;
 t(â3)  =  -1.790509  > t0.025(419)≈0.9;

t(â4)=6.375110> t0.025(419)≈0.9;
It shows the end temperature of the converter, the

amount of added C element; the end point of the
converter C has a significant effect on the yield of
alloying element C, while the end point of the converter
has no significant effect on the yield of alloying element
C.

3.2.2.2 Prediction model of alloy element Mn

η�R = 0.365235 + 0.000520 ∗ �5 + 0.0000017
∗ �653.676548 ∗ �7 − 34.23206 ∗ �8

S.E=0.047705 shows that the average error between
the actual observation point of the alloy element Mn
yield and its estimated value is 0.047705, the error is
small, indicating that the model is well established.

Perform the F test and t test at the 5% significance
level:

F inspection: F=21.60956>F0.05(4,419)≈2
t test:  t(â5)  =  4.957343  >t0.025(419)≈0.9;

t(â6)=0.962281> t0.025(419)≈0.9;
 t(â7)  =  -0.819896  <t0.025(419)≈0.9;

t(â8)=-1.957713> t0.025(419)≈0.9;
It indicates the net weight of molten steel; the added

Mn element and converter end Mn have a significant
effect on the yield of alloying element Mn, while the
converter end S has no significant effect on the yield of
alloying element Mn.

3.3 Improvement of the prediction model of
element yield[4-8]

3.3.1 Modeling ideas

Use Excel's icon trend line function to derive a
variety of functional relationships, use F test and t test to
continuously filter the variables that do not meet the
requirements, and finally get the optimal model.

3.3.2 Solving the model

η� =− 58.29167 + 1.57 ∗ 10−21 ∗ �1
6 − 1.3 ∗ 1016 ∗ �2

6

− 8.71 ∗ 1018 ∗ �3
6 − 4.16 ∗ 10−11

∗ �4
6 + 2.79 ∗ 10−8 ∗ �4

5 − 7.63 ∗ 10−6

∗ �4
4 + 0.001093 ∗ �4

3 − 0.086189
∗ �4

2 + 3.539288 ∗ �4
η�R = 0.803211 + 1.02 ∗ 10−19 ∗ �5

6 + 2.35 ∗ 10−16

∗ �6
3 − 40.15641 ∗ �8

3.3.3 Comparison of models
3.3.3.1 Prediction model of the yield of alloying
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element C

Figure 2. Initial model.

Figure 3. The prediction map of the model after modification.

A. Comparison of regression coefficients:
a. After the modification, the coefficient of X1 is

negative (X1 represents the end point C of the converter),
which is consistent with the expected result. The higher
the end point C of the converter, the lower the
oxidizability of the molten steel and the lower the
element C of the alloy absorbed by the molten steel,
otherwise, the higher.

b. The coefficient of X4 after modification has
positive and negative, and X4 is a polynomial, so it can
not be accurately compared. However, the overall
prediction accuracy of the model has been improved to a
certain extent.

B. Goodness of fit:
a. The R2 value of the original model is 0.311650,

�2� �� = 0.295826, indicating the converter end temperature,
the converter end C, the converter end P; the ability of

the added C to explain the yield of alloying element C is
31.165%. The modified sample determination coefficient
indicates that the interpretation ability is 29.5826%.

b. The R2 value of the modified model is 0.3488,
and �2� �� = 0.314120, indicating the modified variable
end temperature of the converter, the end point of the
converter C, the end point of the converter P; 34.88%,
the modified sample decision coefficient indicates that
the interpretation ability is improved to 31.4120%.

C. t test:  t（ â）  >t0.025(419)≈0.9, all meet the
conditions.

D. Coefficient estimation error: The coefficient
error of the modified model is generally smaller than that
of the model before modification, and the model
optimization is successful. The overall error S.E =
0.055666 <0.056403, so the overall error is reduced.
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Figure 4. The residual distribution map of the modified model.

E. Observation and analysis of residual distribution:
a. In the residual distribution table, most of the

residuals in each period fall within the dotted frame of +
ô, and the model fits well.

b. There is no regularity in the overall residuals,
indicating that the model fits well. Occasionally large
residuals are caused by missing data in the corresponding
sample.

4. Research on the optimization of
the supporting plan for the
"deoxidation alloying" of molten
steel
4.1 Research ideas

Because the prices of different alloys are different,
their choice directly affects the cost of molten steel
deoxidation alloying. According to the prediction results
of alloy yield and the prices of different alloys, the
optimization calculation of molten steel deoxidation
alloying cost is realized, and the alloy batching plan is
given. By establishing the objective function of the
lowest cost and writing the constraint conditions, the
lowest cost is solved by the linear programming model
and the optimization principle, etc., and the
alloy batching scheme is given[9].

4.2 Optimization research-linear
programming model[10-19]

4.2.1 Model establishment
4.2.1.1 Selection of decision variables

Suppose the element to be alloyed is i, and there are
n in total. The types of alloys for adjusting C and Mn are

m. The addition amount of each alloy is x1, x2……xm is
the decision variable.

X= (x1,x2……xm)T

Obviously, the decision variable is non-negative.
The n independent variables of the decision

variables constitute the n-dimensional Euclidean space
En, that is, any point in the n-dimensional space
corresponds to a group of XI (I = 1, 2,…, n) represents
an alloy addition scheme.

4.2.1.2 Establish the objective function

Aiming at the lowest cost of alloy ingredients

minZ =
�=1

�

�����

Among them, Pj is the price of the j-th alloy, the unit
is yuan/ton; Z is the total cost of the alloy ingredients,
the unit is yuan.

4.2.1.3 Determine the constraints

a. Constraints on the target composition of molten
steel

��� ≤
�=1
� ���η��� + ��,0��lloyR �oyyl�

�=1
� �� +� ��lloyR �oyyl

≤ ���

i = 1, 2,…, n, there are n inequalities, j = 1,2,…, m,
there are m inequalities. In the formula, Fij is the content
of element i in the j-th alloy, unit%; ηi is the yield of
element i, unit%; Fi, 0 is the original content of element i
molten steel before alloying, unit%; ��lloyR �oyyl is the
quality of molten steel, unit t; LLi is the lower limit of
the composition of element i, unit%; ULi is the upper
limit of the composition of element i, unit%.

b. Non-negative constraints
Xj≥0 j =1,2 , …, m
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4.2.2 Solving the model

According to the classification of different steel
types, select the historical normal smelting furnace times,
and replace the average value of the number of normal
yields of each steel type with a large number of normal
furnace times. And take the average molten steel as the
molten steel weight.

Use LINGO software to get the following results:
"Objective value: 0.2662077E + 10" indicates that

the optimal target value is 0.2662077 * 10 ^ 10 yuan.
"Total solver iterations: 2" means that the simplex

method is used to iterate twice to obtain the optimal
solution.

"Value" gives the value of each variable in the
optimal solution. That is, the amount of silicon
manganese surface (silicon manganese slag) is 299853.5
tons, and the amount of petroleum coke carburizer is
105884.1 tons.

"Reduced cost" lists the coefficients of the variable
in the row of the discriminant number in the optimal
simplex table, indicating the rate of change of the
objective function when the variable has a slight change.
The reduced cost value of the base variable should be 0.
The corresponding Reduced Cost value represents the
amount by which the objective function increases when
xi increases by one unit (assuming other single non-base
variables remain unchanged). In this model, the Reduced
Cost value corresponding to x5 and x8 is 0, indicating
that when there is a slight change in x5 and x8, the value
of the objective function does not change.

"Dual Price" lists the coefficients of the slack
variables in the row of the discriminant number in the
optimal simplex table, that is, the change rate of the
objective function when the constraint conditions change
slightly, and each corresponding constraint in the output
result has A dual price (shadow price).

5. Conclusion
This paper analyzes the four main factors that affect

the yield of C element: (1) converter end temperature; (2)
converter end point P; (3) amount of added C element; (4)
converter end point C; four main factors that affect Mn
element yield are also analyzed: (1) net weight of molten
steel; (2) added Mn element; (3) converter end point S;
(4) converter end point Mn. So the input of these main

factors should be closely controlled during steel-making
to make the yield close to the predicted value.Based on
optimized logistic regression, the model concludes that
the end temperature of the converter, the amount of
added C element, and the end point of the converter C
have a significant effect on the yield of alloying element
C. The steel plant should allocate the investment ratio of
each major factor to achieve cost reduction and
efficiency increase, thereby achieving the goals of cost
saving and long-term development of the steel plant.
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