Kinematics and Dynamics Analysis of McPherson Suspension Based on Planar 1/4 Vehicle Model

  • Minghui Ye
  • Guangyan Hu
  • Ruixin Zhao
Keywords: suspension, modeling, McPherson suspension, multi-rigid body system, nonlinear model, simulation

Abstract

The nonlinear asymmetric problem of McPherson suspension has become a challenging problem in the process of establishing the system model. This paper presents a planar 1/4-vehicle model that not only takes into account the vertical vibration of the sprung mass (chassis), but also includes: ix spring mass (wheel assembly) sliding and rotation; ii longitudinal wheel mass And its moment of inertia; iii tire damping and lateral defl ection. This dynamic kinematic model provides a solution to two important shortcomings of the traditional 1/4 vehicle model: it explains geometric modeling and tire modeling. This paper provides a systematic development of the planar model and a complete mathematical equation. This analysis model can be applied to hardware in the rapid calculation of ring applications. In addition, the model also gives a repeatable Simulink simulation implementation. The model has been compared with the actual Adams / View simulation to analyze the vibration and rebound motion of the wheel, as well as two related motion parameters: the dynamic characteristics of the camber and the pitch change.

References

Mantaras D, Luque P, Vera C. Development and validation of a three-dimensional kinematic model for the McPherson steering

and suspension mechanisms. Mech Mach Theory. 2004; 39: 603-619.

Deo H, Suh N. Axiomatic design of automobile suspension and steering systems: proposal for a novel six-bar suspension.

Detroit, MI: SAE World Congress;

Kinematics and Dynamics Analysis of McPherson Suspension Based on Planar 1/4 Vehicle Model

Mántaras DA, Luque P. Virtual test rig to improve the design and optimization process of the vehicle steering and suspension

systems. Veh Syst Dyn. 2012; 50: 1563-1584.

Choi SB, Lee HS, Park YP. H-infi nity control performance of a full-vehicle suspension featuring magnetorheological dampers.

Veh Syst Dyn. 2002; 38: 341-360.

Biglarbegian M, Melek W, Golnaraghi F.A novel neuro-fuzzy controller to enhance the performance of vehicle semi-active

suspension systems. Veh Syst Dyn. 2008; 46: 691-711.

Abu-Khudhair A, Muresan R, Yang S. Fuzzy control of semi-active automotive suspensions. International Conference on

Mechatronics and Automation; 2009 Aug 9-12; Changchun, China. P. 2118-2122.

Kashani R, Strelow JE. Fuzzy logic active and semi-active control of off -road vehicle suspensions. Veh Syst Dyn. 2010; 32:

-420.

Dong XM, Yu M, Liao CR, Chen WM. Comparative research on semi-active control strategies for magnetorheological

suspension. Nonlinear Dynam. 2010; 59: 433-453.

Sun J, Sun Y. Comparative study on control strategy of active suspension system. Proceedings of the International Conference

on Measuring Technology and Mechatronics Automation. Vol. 1; 2011 Jan 6-7; Shanghai, China. P. 729-732.

Sancibrian R, Garcia P, Viadero F, Fernandez A, De-Juan A. Kinematic design of double-wishbone suspension systems using a

multiobjective optimisation approach. Veh Syst Dyn. 2010; 48: 793-813.

Balike K, Rakheja S, Stiharu I. Development of kineto-dynamic quarter-car model for synthesis of a double wishbone

suspension. Veh Syst Dyn. 2011; 49: 107-128.

Hrovat D. Survey of advanced suspension developments and related optimal applications applications.

Automatica. 1997; 33: 1781-1817.

Akcay H, Türkay S. RMS performance limitations and constraints for quarter-car active suspensions. 16th

Mediterranean Conference on Control and Automation; 2008 June 25-27; Ajaccio, France. P. 425-430.

Dean K. How signifi cant are transfer function relations and invariant points for a quarter car suspension

model? Veh Syst Dyn. 2009; 47: 457-464.

Kim C, Ro P, Kim H. Eff ect of the suspension structure on equivalent suspension parameters. Proceedings of

the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering Vol. 213; 1999 May 1;

London: Sage Publications P. 457-470.

Siau G. Equivalent spring and damper for conceptual suspension modeling [Master's thesis]. Eindhoven:

University of Technology;

Dixon JC. Suspension geometry and computation. Chippenham, UK: First Antony Rowe Ltd .; 2009.

Fallah M, Bhat R, Xie WF. H∞ robust control of semi-active MacPherson suspension system: new applied

design. Veh Syst Dyn. 2010; 48: 339-360.

Stensson A, Asplund C, Karlsson L. The nonlinear behavior of a MacPherson strut wheel suspension. Veh

Syst Dyn. 1994; 23: 85-106.

Andersen ER. Multibody dynamics modeling and system identification for a quarter-car test rig with

McPherson strut suspension [Master's thesis]. Faculty of the Virginia Polytechnic Institute;

BasariA, Samy, Hamzah N. Nonlinear active suspension system with backstepping control strategy. 2nd

IEEE Conference on Industrial Electronics and Applications; 2007 May 23-25; Harbin, China. P. 554-558.

Fallah M, Bhat R, Xie W. New model and simulation of MacPherson suspension system for ride control

applications. Veh Syst Dyn. 2009; 47: 195-220.

Kim C, Ro P. Reduced-order modeling and parameter estimation for a quarter-car suspension system.

Proceedings of the Institution of Mechanical Engineers, Part D: Journal ofAutomobile Engineering.Vol. 214;

Aug 1; London: Sage Publications P. 851-864.

Yang J, Abdel-Malek K. Design propagation in kinematics of mechanical systems. Mech Mach Theory.

; 42: 807-824.

Papegay YA, Merlet JP, Daney D. Exact kinematics analysis of car's suspension mechanisms using symbolic

computation and interval analysis. Mech Mach Theory. 2005; 40: 395-413.

Sandu C, Andersen ER, Southward S. Multibody dynamics modation and system identifi cation of a quartercar

test rig with McPherson strut suspension. Veh Syst Dyn. 2011; 49: 153-179.

Zhao JS, Liu X, Feng ZJ, Dai JS. Stiff ness of a rectilinear suspension with automatic length compensation

branches. Mech Mach Theory. 2012; 56: 99-122.

Hurel J, Mandow A, García-Cerezo A. Nonlinear two-dimensional modeling of a McPherson suspension for

kinematics and dynamics simulation. The 12th International Workshop onAdvanced Motion Control; 2012

Mar 25-27; Sarajevo, Bosnia and Herzegovina: IEEE. P. 1-6.

Suh C. Synthesis and analysis of suspension mechanisms with use of displacement matrices. SAE Trans.

; 98: 171-182.

Dressler K, Speckert M, Bitsch G. Virtual durability test rigs for automotive engineering. Veh Syst Dyn.

; 47: 387-401.

Reimpell J, Stoll H, Betzler JW. The Automotive Chassis: engineering principles, 2nd ed. Oxford, UK:

Butterworth-Heinemann; 2001.

Published
2019-04-19
Section
Original Research Articles