Fundamentals of different wind turbines for electricity generation and their modelling methods using different algorithms

  • Ranjbar Zohreh Department of Computer Engineering and Information Technology, Qazvin Islamic Azad University
  • Shahab Jalili Sheshbahreh Faculty of Electrical Engineering, Amirkabir University of Technology
  • Mahsa Ghorbani Department of Civil Engineering, Amirkabir University of Technology
  • Rahim Zahedi Department of Renewable Energy and Environmental Engineering, University of Tehran
  • Mansour Keshavarzzadeh Faculty of Mechanical Engineering, Iran University of Science and Technology
  • Hossein Yousefi Department of Renewable Energy and Environmental Engineering, University of Tehran
Keywords: particle image velocimetry, darrieus, wind turbine, aerodynamics, CFD, modeling


 Increased concern for the environment has led to the search for more environment-friendly energy sources so that wind energy can be used as an endless option for human consumption. Wind turbines offer a promising solution for off-grid areas. However, they have certain drawbacks associated with different configurations. Darrieus turbine is one type that can be more efficient than other types. The poor start-up performance of Darrieus turbines is one of the critical problems restricting its development. Another problem of this kind of wind turbine is tackled by identifying the optimization parameters, such as complex flow dynamics around the system. The present article reviews modeling vertical axis turbines methods and discusses the turbine’s operation by presenting the results of these methods. In this review, the authors have attempted to compile the main aerodynamic models that have been used for performance prediction and design of straight-bladed Darrieus-type VAWT. The main object of this study is to research the advantages and disadvantages of wind turbine modeling methods, and the selection of these methods depends on the purpose of the modeling.


Amjith L, Bavanish A. A review on biomass and wind as renewable energy for sustainable environment. Chemosphere 2022; 293: 133579. doi: 10.1016/j.chemosphere.2022.133579

Hao D, Qi L, Tairab AM, et al. Solar energy harvesting technologies for PV self-powered applications: A comprehensive review. Renewable Energy 2022; 188: 678–697. doi: 10.1016/j.renene.2022.02.066

Cunha RP, Bourne-Webb PJ. A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings. Renewable and Sustainable Energy Reviews 2022; 158: 112072. doi: 10.1016/j.rser.2022.112072

Rahman A, Farrok O, Haque MM. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renewable and Sustainable Energy Reviews 2022; 161: 112279. doi: 10.1016/j.rser.2022.112279

Machado JTM, Andrés M. Implications of offshore wind energy developments in coastal and maritime tourism and recreation areas: An analytical overview. Environmental Impact Assessment Review 2023; 99: 106999. doi: 10.1016/j.eiar.2022.106999

Salmerón-Manzano E, Alcayde A, Manzano-Agugliaro F. Renewable energy predictions: Worldwide research trends and future perspective. Prediction Techniques for Renewable Energy Generation and Load Demand Forecasting 2023; 93–110.

Karmakar SD, Chattopadhyay H. A review of augmentation methods to enhance the performance of vertical axis wind turbine. Sustainable Energy Technologies and Assessments 2022; 53: 102469. doi: 10.1016/j.seta.2022.102469

Homa M, Pałac A, Żołądek M, et al. Small-scale hybrid and polygeneration renewable energy systems: Energy generation and storage technologies, applications, and analysis methodology. Energies 2022; 15(23): 9152. doi: 10.3390/en15239152

Pishgar-Komleh S, Keyhani A, Sefeedpari P. Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran). Renewable and Sustainable Energy Reviews 2015; 42: 313–322. doi: 10.1016/j.rser.2014.10.028

Zahedi R, Ghorbani M, Daneshgar S, et al. Potential measurement of Iran’s western regional wind energy using GIS. Journal of Cleaner Production 2022; 330: 129883. doi: 10.1016/j.jclepro.2021.129883

Jahromi S, Moosavian SF, Yaghoubirad M, et al. 4E analysis of the horizontal axis wind turbine with LCA consideration for different climate conditions. Energy Science & Engineering 2022; 10(10): 4085–4111. doi: 10.1002/ese3.1272

Zahedi R, Ahmadi A, Eskandarpanah R, et al. Evaluation of resources and potential measurement of wind energy to determine the spatial priorities for the construction of wind-driven power plants in damghan city. International Journal of Sustainable Energy and Environmental Research 2022; 11(1): 1–22. doi: 10.18488/13.v11i1.2928

Alom N, Saha UK. Evolution and progress in the development of savonius wind turbine rotor blade profiles and shapes. Journal of Solar Energy Engineering 2019; 141(3): 030801. doi: 10.1115/1.4041848

Yang B, Yu T, Shu H, et al. Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers. Applied Energy 2018; 210: 711–723. doi: 10.1016/j.apenergy.2017.08.027

Irawan EN, Sitompul S, Yamashita KI, et al. The effect of rotor radius ratio on the performance of hybrid vertical axis wind turbine savonius-darrieus NREL S809. Journal of Energy and Power Technology 2023; 5(1): 1–12. doi: 10.21926/jept.2301001

Möllerström E, Gipe P, Beurskens J, et al. A historical review of vertical axis wind turbines rated 100 kW and above. Renewable and Sustainable Energy Reviews 2019; 105: 1–13. doi: 10.1016/j.rser.2018.12.022

Bhutta MMA, Hayat N, Farooq AU, et al. Vertical axis wind turbine—A review of various configurations and design techniques. Renewable and Sustainable Energy Reviews 2012; 16(4): 1926–1939. doi: 10.1016/j.rser.2011.12.004

Roy S, Das B, Biswas A. A comprehensive review of the application of bio-inspired tubercles on the horizontal axis wind turbine blade. International Journal of Environmental Science and Technology 2022; 20(4): 4695–4722.

Appadurai M, Fantin Irudaya Raj E, Lurthu Pushparaj T. Sisal fiber-reinforced polymer composite-based small horizontal axis wind turbine suited for urban applications—A numerical study. Emergent Materials 2022; 5(2): 565–578.

Jha AR. Wind Turbine Technology. CRC press; 2010.

Spera A. Wind Turbine Technology. CRC press; 1994.

Wang B, Geoffroy S, Bonhomme M. Urban form study for wind potential development. Environment and Planning B: Urban Analytics and City Science 2022; 49(1): 76–91. doi: 10.1177/2399808321994449

Al Noman A, Tasneem Z, Sahed MF, et al. Towards next generation savonius wind turbine: Artificial intelligence in blade design trends and framework. Renewable and Sustainable Energy Reviews 2022; 168: 112531. doi: 10.1016/j.rser.2022.112531

Hesami A, Nikseresht AH, Mohamed MH. Feasibility study of twin-rotor Savonius wind turbine incorporated with a wind-lens. Ocean Engineering 2022; 247: 110654. doi: 10.1016/j.oceaneng.2022.110654

Estelaji F, Naseri A, Zahedi R. Evaluation of the performance of vital services in urban crisis management. Advances in Environmental and Engineering Research 2022; 3(4): 1–19. doi: 10.21926/aeer.2204057

Zahedi R, Sadeghitabar E, Ahmadi A. Solar energy potential assessment for electricity generation in the southeastern coast of Iran. Future Energy 2023; 2(1): 15–22.

Howell R, Qin N, Edwards J, et al. Wind tunnel and numerical study of a small vertical axis wind turbine. Renewable Energy 2010; 35(2): 412–422. doi: 10.1016/j.renene.2009.07.025

Kumar N, Prakash O. Analysis of wind energy resources from high rise building for micro wind turbine: A review. Wind Engineering 2023; 47(1): 190–219. doi: 10.1177/0309524X221118684

Trentin PFS, Barros Martinez PHB, Santos GB, et al. Screening analysis and unconstrained optimization of a small-scale vertical axis wind turbine. Energy 2022; 240: 122782. doi: 10.1016/

Zemamou M, Aggour M, Toumi A. Review of savonius wind turbine design and performance. Energy Procedia 2017; 141: 383–388. doi: 10.1016/j.egypro.2017.11.047

Gipe P, Möllerström E. An overview of the history of wind turbine development: Part I—The early wind turbines until the 1960s. Wind Engineering 2022; 46(6): 1973–2004. doi: 10.1177/0309524X221117825

Manatbayev R, Baizhuma Z, Bolegenova S, et al. Numerical simulations on static Vertical Axis Wind Turbine blade icing. Renewable Energy 2021; 170: 997–1007. doi: 10.1016/j.renene.2021.02.023

Guo W, Shen H, Li Y, et al. Wind tunnel tests of the rime icing characteristics of a straight-bladed vertical axis wind turbine. Renewable Energy 2021; 179: 116–132. doi: 10.1016/j.renene.2021.07.033

Song J, Chen J, Wu Y, et al. Topology optimization-driven design for offshore composite wind turbine blades. Journal of Marine Science and Engineering 2022; 10(10): 1487. doi: 10.3390/jmse10101487

Hand B, Cashman A. A review on the historical development of the lift-type vertical axis wind turbine: From onshore to offshore floating application. Sustainable Energy Technologies and Assessments 2020; 38: 100646. doi: 10.1016/j.seta.2020.100646

Kim S, Cheong C. Development of low-noise drag-type vertical wind turbines. Renewable Energy 2015; 79: 199–208. doi: 10.1016/j.renene.2014.09.047

Jiang Y, Liu S, Zao P, et al. Experimental evaluation of a tree-shaped quad-rotor wind turbine on power output controllability and survival shutdown capability. Applied Energy 2022; 309: 118350. doi: 10.1016/j.apenergy.2021.118350

Zahedi R, Rad AB. Numerical and experimental simulation of gas-liquid two-phase flow in 90-degree elbow. Alexandria Engineering Journal 2021; 61(3): 2536–2550. doi: 10.1016/j.aej.2021.07.011

Zheng M, Li Y, Teng H, et al. Effect of blade number on performance of drag type vertical axis wind turbine. Applied Solar Energy 2016; 52(4): 315–320.

Barnes A, Marshall-Cross D, Hughes BR. Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development. Renewable and Sustainable Energy Reviews 2021; 148: 111221. doi: 10.1016/j.rser.2021.111221

El-Baz AR, Youssef K, Mohamed MH. Innovative improvement of a drag wind turbine performance. Renewable Energy 2016; 86: 89–98. doi: 10.1016/j.renene.2015.07.102

Saat AF, Rosly N. Aerodynamic analysis of vertical axis wind turbine. Journal of Aviation and Aerospace Technology 2019; 1(1).

Kaustubhasai N, Balachandra TC. Design and fabrication of hybrid system for highway power generation. In: Advances in Renewable Energy and Electric Vehicles: Select Proceedings of AREEV 2020. Springer Singapore; 2022.

Wong KH, Chong WT, Sukiman L, et al. Performance enhancements on vertical axis wind turbines using flow augmentation systems: A review. Renewable and Sustainable Energy Reviews 2017; 73: 904–921. doi: 10.1016/j.rser.2017.01.160

Li J, Cao Y, Wu G, et al. Aerodynamic stability of airfoils in lift-type vertical axis wind turbine in steady solver. Renewable Energy 2017; 111: 676–687. doi: 10.1016/j.renene.2017.04.057

Adnan AIZ, Mohd S, Saad MMM, et al. Aerodynamics analysis of helical wind turbine rotor high speed train. Journal of Aviation and Aerospace Technology 2019; 1(2).

Saleh A, Feeny BF. Modal analysis of a vertical-axis darrieus wind turbine blade with a troposkein shape, In: Topics in Modal Analysis & Testing. Springer International Publishing; 2019. pp. 325–327.

Hand B, Kelly G, Cashman A. Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review. Renewable and Sustainable Energy Reviews 2021; 139: 110699. doi: 10.1016/j.rser.2020.110699

Zhao Z, Wang D, Wang T, et al. A review: Approaches for aerodynamic performance improvement of lift-type vertical axis wind turbine. Sustainable Energy Technologies and Assessments 2022; 49: 101789. doi: 10.1016/j.seta.2021.101789

Daneshgar S, Zahedi R. Optimization of power and heat dual generation cycle of gas microturbines through economic, exergy and environmental analysis by bee algorithm. Energy Reports 2022; 8: 1388–1396. doi: 10.1016/j.egyr.2021.12.044

Ren F, Wei Z, Zhai X. A review on the integration and optimization of distributed energy systems. Renewable and Sustainable Energy Reviews 2022; 162: 112440. doi: 10.1016/j.rser.2022.112440

Roy L, Kincaid K, Mahmud R, et al. Double-multiple streamtube analysis of a flexible vertical axis wind turbine. Fluids 2021; 6(3): 118. doi: 10.3390/fluids6030118

Koca K, Genç MS, Ertürk S. Impact of local flexible membrane on power efficiency stability at wind turbine blade. Renewable Energy 2022; 197: 1163–1173. doi: 10.1016/j.renene.2022.08.038

Zahedi R, Daneshgar S, Seraji MAN, et al. Modeling and interpretation of geomagnetic data related to geothermal sources, Northwest of Delijan. Renewable Energy 2022; 196: 444–450. doi: 10.1016/j.renene.2022.07.004

Chen J, Yang H, Yang M, et al. A comprehensive review of the theoretical approaches for the airfoil design of lift-type vertical axis wind turbine. Renewable and Sustainable Energy Reviews 2015; 51: 1709–1720. doi: 10.1016/j.rser.2015.07.065

Alom N, Saha UK. Evolution and progress in the development of savonius wind turbine rotor blade profiles and shapes. Journal of Solar Energy Engineering 2019; 141(3): 030801. doi: 10.1115/1.4041848

Freitas TRS, Menegáz PJM, Simonetti DSL. Rectifier topologies for permanent magnet synchronous generator on wind energy conversion systems: A review. Renewable and Sustainable Energy Reviews 2016; 54: 1334–1344. doi: 10.1016/j.rser.2015.10.112

Apsley DD, Stansby PK. Unsteady thrust on an oscillating wind turbine: Comparison of blade-element momentum theory with actuator-line CFD. Journal of Fluids and Structures 2020; 98: 103141. doi: 10.1016/j.jfluidstructs.2020.103141

Ottermo F, Bernhoff H. An upper size of vertical axis wind turbines. Wind Energy 2014; 17(10): 1623–1629. doi: 10.1002/we.1655

Roga S, Bardhan S, Kumar Y, et al. Recent technology and challenges of wind energy generation: A review. Sustainable Energy Technologies and Assessments 2022; 52: 102239. doi: 10.1016/j.seta.2022.102239

Ottermo F, Möllerström E, Nordborg A, et al. Location of aerodynamic noise sources from a 200 kW vertical-axis wind turbine. Journal of Sound and Vibration 2017; 400: 154–166. doi: 10.1016/j.jsv.2017.03.033

Dhanola A, Garg HC. Tribological challenges and advancements in wind turbine bearings: A review. Engineering Failure Analysis 2020; 118: 104885. doi: 10.1016/j.engfailanal.2020.104885

Wang Y, Hu Q, Li L, et al. Approaches to wind power curve modeling: A review and discussion. Renewable and Sustainable Energy Reviews 2019; 116: 109422. doi: 10.1016/j.rser.2019.109422

Dao C, Kazemtabrizi B, Crabtree C. Wind turbine reliability data review and impacts on levelised cost of energy. Wind Energy 2019; 22(12): 1848–1871. doi: 10.1002/we.2404

Tusar MIH, Sarker BR. Maintenance cost minimization models for offshore wind farms: A systematic and critical review. International Journal of Energy Research 2022; 46(4): 3739–3765. doi: 10.1002/er.7425

Wang L, Kolios A, Liu X, et al. Reliability of offshore wind turbine support structures: A state-of-the-art review. Renewable and Sustainable Energy Reviews 2022; 161: 112250. doi: 10.1016/j.rser.2022.112250

Civera M, Surace C. Non-destructive techniques for the condition and structural health monitoring of wind turbines: A literature review of the last 20 years. Sensors 2022; 22(4): 1627. doi: 10.3390/s22041627

Hines EM, Baxter CDP, Ciochetto D, et al. Structural instrumentation and monitoring of the Block Island Offshore Wind Farm. Renewable Energy 2023; 202: 1032–1045. doi: 10.1016/j.renene.2022.11.115

Dabiri JO. Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays. Journal of Renewable and Sustainable Energy 2011; 3(4): 043104. doi: 10.1063/1.3608170

Hou P, Zhu J, Ma K, et al. A review of offshore wind farm layout optimization and electrical system design methods. Journal of Modern Power Systems and Clean Energy 2019; 7(5): 975–986. doi: 10.1007/s40565-019-0550-5

Molina AC, Troyer T, Massai T, et al. Effect of turbulence on the performance of VAWTs: An experimental study in two different wind tunnels. Journal of Wind Engineering and Industrial Aerodynamics 2019; 193: 103969. doi: 10.1016/j.jweia.2019.103969

Möllerström E, Ottermo F, Goude A, et al. Turbulence influence on wind energy extraction for a medium size vertical axis wind turbine. Wind Energy 2016; 19(11): 1963–1973. doi: 10.1002/we.1962

Zahedi R, Ahmadi A, Gitifar S. Feasibility study of biodiesel production from oilseeds in Tehran province. Journal of Renewable and New Energy 2023; 10(1): 86–96. doi: 10.52547/JRENEW.10.1.86

Loth JL. Aerodynamic tower shake force analysis for VAWT. Journal of Solar Energy Engineering 1985; 107(1): 45–49. doi: 10.1115/1.3267652

Moghimi M, Motawej H. Developed DMST model for performance analysis and parametric evaluation of Gorlov vertical axis wind turbines. Sustainable Energy Technologies and Assessments 2020; 37: 100616. doi: 10.1016/j.seta.2019.100616

Wang Z, Wang Y, Zhuang M. Improvement of the aerodynamic performance of vertical axis wind turbines with leading-edge serrations and helical blades using CFD and Taguchi method. Energy Conversion and Management 2018; 177: 107–121. doi: 10.1016/j.enconman.2018.09.028

Zahedi R, Ghodusinejad MH, Gitifar S. Threats evaluation of border power plants from the perspective of fuel type and providing solutions to deal with them: A case study of Iran. Transactions of the Indian National Academy of Engineering 2023; 8(1): 55–67.

Homicz GF. VAWT stochastic loads produced by atmospheric turbulence. Journal of Solar Energy Engineering 1989; 111(4): 358–366. doi: 10.1115/1.3268335

Islam M, Ting DSK, Fartaj A. Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines. Renewable and Sustainable Energy Reviews 2008; 12(4): 1087–1109. doi: 10.1016/j.rser.2006.10.023

Templin RJ. Aerodynamic Performance Theory for the NRC Vertical-Axis Wind Turbine. National Aeronautical Establishment; 1974.

Hansen M. Aerodynamics of Wind Turbines. Routledge; 2015.

Daneshgar S, Zahedi R. Investigating the hydropower plants production and profitability using system dynamics approach. Journal of Energy Storage 2022; 46: 103919. doi: 10.1016/j.est.2021.103919

Wilson RE, Lissaman PBS. Applied aerodynamics of wind power machines. National Science Foundation 1974.

Asemi H, Daneshgar S, Zahedi R. Experimental investigation of gamma Stirling refrigerator to convert thermal to cooling energy utilizing different gases. Future Technology 2023; 2(2): 1–10.

Saber E, Afify R, Elgamal H. Performance of SB-VAWT using a modified double multiple stream tube model. Alexandria Engineering Journal 2018; 57(4): 3099–3110.

Babaie Pirouziana AR, Zahedi R, Ahmadi A, et al. Integration of renewable energy-based systems for transport sector in 2050; A case study in Iran. Renewable Energy Research and Applications 2023; 4(1): 21–30. doi: 10.22044/rera.2022.11910.1124

Paraschivoiu I. Double-Multiple Streamtube Model for Darrieus in Turbines. NASA. Lewis Research Center Wind Turbine Dyn; 1981.

Paraschivoiu I. Wind Turbine Design: With Emphasis on Darrieus Concept. Presses inter Polytechnique; 2020

Batista NC, Melício R, Mendes VMF, et al. Darrieus wind turbine performance prediction: Computational modeling. In: Camarinha-Matos LM, Tomic S, Graça P (editors). Technological Innovation for the Internet of Things. Springer Berlin Heidelberg; 2013. pp. 382–391.

Mandal A. Aerodynamics and Design Analysis of Vertical Axis Darrieus Wind Turbines [Bachelor’s thesis]. Vrije Universiteit Brussel; 1986.

Dixon K, Simao Ferreira CJ, Hofemann C, et al. A 3D unsteady panel method for vertical axis wind turbines. In: European Wind Energy Conference & Exhibition EWEC Brussels. European Wind Energy Association EWEA; 2008. pp. 1–10.

Dyachuk E, Goude A. Numerical validation of a vortex model against experimentaldata on a straight-bladed vertical axis wind turbine. Energies 2015; 8(10): 11800–11820. doi: 10.3390/en81011800

Khah MV, Zahedi R, Mousavi MS, et al. Forecasting renewable energy utilization by Iran’s water and wastewater industries. Utilities Policy 2023; 82: 101546. doi: 10.1016/j.jup.2023.101546

Pourrahmani H, Zahedi R, Daneshgar S, et al. Lab-Scale Investigation of the integrated backup/storage system for wind turbines using alkaline electrolyzer. Energies 2023; 16(9): 3761. doi: 10.3390/en16093761

Rolin VFC, Porté-Agel F. Experimental investigation of vertical-axis wind-turbine wakes in boundary layer flow. Renewable Energy 2018; 118: 1–13. doi: 10.1016/j.renene.2017.10.105

Fujisawa N, Takeuchi M. Flow visualization and PIV measurement of flow field around a Darrieus rotor in dynamic stall. Journal of Visualization 1999; 1(4): 379–386.

Asemi H, Zahedi R, Daneshgar S. Theoretical analysis of the performance and optimization of indirect flat evaporative coolers. Future Energy 2023; 2(1): 9–14.

Danao LA, Edwards J, Eboibi O, et al. A numerical investigation into the influence of unsteady wind on the performance and aerodynamics of a vertical axis wind turbine. Applied Energy 2014; 116: 111–124. doi: 10.1016/j.apenergy.2013.11.045

Asemi H, Daneshgar S, Zahedi R. Experimental investigation of gamma Stirling engine coupling to convert thermal to cooling energy in different laboratory conditions. Resources Environment and Information Engineering 2022; 4(1): 200–212. doi: 10.25082/REIE.2022.01.004

Chowdhury AM, Akimoto H, Hara Y. Comparative CFD analysis of Vertical Axis Wind Turbine in upright and tilted configuration. Renewable Energy 2016; 85: 327–337. doi: 10.1016/j.renene.2015.06.037

Hassanpour M, Azadani LN. Aerodynamic optimization of the configuration of a pair of vertical axis wind turbines. Energy Conversion and Management 2021; 238: 114069. doi: 10.1016/j.enconman.2021.114069

Wong KH, Chong WT, Poh SC, et al. 3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine. Renewable Energy 2018; 129: 32–55. doi: 10.1016/j.renene.2018.05.085

Allet A, Hallé S, Paraschivoiu I. Numerical simulation of dynamic stall around an airfoil in Darrieus motion. Journal of Solar Energy Engineering 1999; 121(1): 69–76. doi: 10.1115/1.2888145

Debnath BK, Biswas A, Gupta R. Computational fluid dynamics analysis of a combined three-bucket Savonius and three-bladed Darrieus rotor at various overlap conditions. Journal of Renewable and Sustainable Energy 2009; 1(3): 033110. doi: 10.1063/1.3152431

Wang S, Ingham DB, Ma L, et al. Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils. Computers & Fluids 2010; 39(9): 1529–1541. doi: 10.1016/j.compfluid.2010.05.004

Khah MV, Asemi H, Daneshgar S, et al. Thermal analysis and optimization of indirect flat evaporative coolers. International Journal of Thermofluids 2022; 16: 100246. doi: 10.1016/j.ijft.2022.100246

Simão Ferreira C, Van Kuik G, Van Bussel G, et al. Visualization by PIV of dynamic stall on a vertical axis wind turbine. Experiments in Fluids 2009; 46(1): 97–108.

Lei H, Zhou D, Bao Y, et al. Three-dimensional improved delayed detached eddy simulation of a two-bladed vertical axis wind turbine. Energy Conversion and Management 2017; 133: 235–248. doi: 10.1016/j.enconman.2016.11.067

Shamsoddin S, Porté-Agel F. A large-eddy simulation study of vertical axis wind turbine wakes in the atmospheric boundary layer. Energies 2016; 9(5): 366. doi: 10.3390/en9050366

Battisti L, Persico G, Dossena V, et al. Experimental benchmark data for H-shaped and troposkien VAWT architectures. Renewable Energy 2018; 125: 425–444. doi: 10.1016/j.renene.2018.02.098

Santamaría L, Oro JMF, Díaz KMA, et al. Novel methodology for performance characterization of vertical axis wind turbines (VAWT) prototypes through active driving mode. Energy Conversion and Management 2022; 258: 115530. doi: 10.1016/j.enconman.2022.115530

Miao W, Liu Q, Zhang Q, et al. Recommendation for strut designs of vertical axis wind turbines: Effects of strut profiles and connecting configurations on the aerodynamic performance. Energy Conversion and Management 2023; 276: 116436. doi: 10.1016/j.enconman.2022.116436

Menet JL, Bourabaa N. Increase in the Savonius rotors efficiency via a parametric investigation. In: Proceedings of the European Wind Energy Conference & Exhibition; 22–25 November 2004; London, UK. pp. 22–25.

Hu B, Nian H, Li M, et al. Impedance characteristic analysis and stability improvement method for DFIG system within PLL bandwidth based on different reference frames. IEEE Transactions on Industrial Electronics 2022; 70(1): 532–543. doi: 10.1109/TIE.2022.3150092

Siddiqui MS, Khalid MH, Badar AW, et al. Parametric analysis using CFD to study the impact of Geometric and numerical modeling on the performance of a small scale horizontal axis wind turbine. Energies 2022; 15(2): 505. doi: 10.3390/en15020505

Parakkal JU, El Kadi K, El-Sinawi A, et al. Numerical analysis of VAWT wind turbines: Joukowski vs classical NACA rotor’s blades. Energy Procedia 2019; 158: 1194–1201. doi: 10.1016/j.egypro.2019.01.306

Naccache G, Paraschivoiu M. Parametric study of the dual vertical axis wind turbine using CFD. Journal of Wind Engineering and Industrial Aerodynamics 2018; 172: 244–255. doi: 10.1016/j.jweia.2017.11.007

Korobenko A, Hsu MC, Akkerman I, et al. Aerodynamic simulation of vertical-axis wind turbines. Journal of Applied Mechanics 2014; 81(2): 021011. doi: 10.1115/1.4024415

Amet E, Maître T, Pellone C, et al. 2D numerical simulations of blade-vortex interaction in a darrieus turbine. Journal of Fluids Engineering 2009; 131(11): 111103. doi: 10.1115/1.4000258

D’Alessandro V, Montelpare S, Ricci R, et al. Unsteady Aerodynamics of a Savonius wind rotor: A new computational approach for the simulation of energy performance. Energy 2010; 35(8): 3349–3363. doi: 10.1016/

Jaohindy P, Ennamiri H, Garde F, et al. Numerical investigation of airflow through a Savonius rotor. Wind Energy 2014; 17(6): 853–868. doi: 10.1002/we.1601

Ghoshchi A, Zahedi R, Pour ZM, et al. Machine learning theory in building energy modeling and optimization: A bibliometric analysis. International Journal of Green Energy 2022; 1(4). doi: 10.53964/jmge.2022004

Fluent A. Ansys Fluent 12.0 Theory Guide. ANSYS Inc; 2009.

Rezaeiha A, Kalkman I, Blocken B. CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment. Renewable Energy 2017; 107: 373–385. doi: 10.1016/j.renene.2017.02.006

DeCoste J, Smith A, White D, et al. Self-starting Darrieus Wind Turbine. Design Project Mech 4020. Dalhousie University, Canada; 2004.

Review Article