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Abstract: Unconfined Compressive Strength (UCS) test is a widely used lab procedure for 

assessing soil’s undrained shear strength. However, conventional lab testing is time-, cost-, and 

labor-intensive. This study evaluates predictive models for UCS using basic soil parameters. 

Soil mixtures were prepared and tested through several laboratory experiments, including 

Atterberg’s limits, particle size distribution, water content, bulk density using Harvard 

miniature compaction apparatus, and UCS. A total of 152 soil samples were utilized to train 

the prediction models. To achieve that, multi-linear regression (MLR), multi-nonlinear 

regression (MNLR), and backpropagation Artificial Neural Networks (ANN) were employed 

to relate the dependent variable UCS (predicted) to the independent geotechnical parameters 

(predictors). Results showed that the best model to predict the UCS values for soil using its 

soil parameters is the ANN-based model with R2 of 83% and ASE (Averaged Square Error) of 

0.0029, followed by the nonlinear regression model with R2 = 49.2% and ASE of 3.63, and 

finally the MLR model with R2 = 44.5% and ASE of 3.92. 

Keywords: UCS; Artificial Neural Networks (ANN); multi-linear regression (MLR); multi-

nonlinear regression (MNLR) 

1. Introduction 

Soil shear strength is a critical parameter for the design and analysis of various 

engineering applications, including the bearing capacity of shallow and deep 

foundations, retaining structures design, and slope stability. It depends on two main 

factors: cohesion, which binds soil particles [1], and internal friction, which resists soil 

grain sliding [2]. These parameters are measured using in-situ tests, such as the 

Standard Penetration Test (SPT) and Cone Penetration Test (CPT), or laboratory tests, 

including the Triaxial, Unconfined Compressive Strength (UCS), and direct shear tests 

[3]. Our study is focused on building a laboratory testing database to determine the 

UCS strength parameter of the various soil mixtures with the aid of statically based 

and machine learning-based approaches. 

The Unconfined Compressive Strength (UCS) test measures the stress cohesive 

soils can withstand before failing under peak axial compressive force without 

confinement [4]. UCS is an undrained shear test, where the soil samples are loaded 

rapidly, preventing complete dissipation of pore water pressure. For this reason, UCS 

represents a conservative approach, representing the worst-case scenario a soil may 

experience in the field [5], which makes it a favored method among geotechnical 

engineers for determining shear strength. UCS is widely used to determine shear 

strength due to its simplicity but is limited by high costs, time, and labor requirements. 

Examples of applications for the UCS test include slope stability, foundation design, 
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and pavement subgrade. In pavement application, UCS represents subgrade strength 

under undrained conditions. Studies show UCS values correlate with the California 

Bearing Ratio (CBR) for treated swelling soils [6]. The undrained shear strength, cu, 

is a fundamental design parameter for saturated clay and can be hard to determine in 

the field. UCS is double the value of CU [7], which adds to the UCS viability in design 

and analysis tasks. In the railway application, a study by [8] explained the importance 

of UCS values for assisting the railway ballast deterioration. The study showed a 

strong relation between UCS values and predicting railway ballast deterioration 

parameters, including settlement. 

Recent studies have used machine learning to estimate UCS for various soils and 

rocks. Afolagboye et al. [9] investigated four distinct machine learning models, 

Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network 

(ANN), and Relevance Vector Machine (RVM), to predict the uniaxial strength of 

crystalline rock. They trained the models on data collected from the literature. In their 

study, ANN showed a high predictive accuracy with R2 training of 94% and R2 testing 

of 84%. Artificial Neural Networks (ANN) is a data modeling technique that has been 

applied to complex geotechnical problems. ANN has shown strong potential for 

solving non-linear geotechnical problems [10]. 

Many researchers have related the soil shear strength to the soil’s basic 

geotechnical parameters such as Atterberg’s limits, bulk density, water content, and 

particle size distribution to reduce testing effort and time. This study investigates the 

relationship between soil’s geotechnical properties/parameters and UCS values. 

Previous research has explored the influence of various factors on soil shear strength. 

For example, Jiang et al. [11] examined the effect of clay content, moisture content, 

and density on cohesion and angle of friction of paddy soils. Using a direct shear 

apparatus, they tested twenty combinations of soil samples with different water 

content to determine the shear strength parameters for each mixture. The results 

showed that cohesion increases as the soil’s clay content and density increase and 

decreases as water content increases. Whereas the internal friction angle enhanced as 

the bulk density and water content increased. Additionally, the study found that the 

soil’s friction angle dropped drastically to zero when the soil’s water content was 

higher than its liquid limit. A statistical analysis model was then developed to predict 

soil strength parameters using basic soil properties. The model achieved a mean square 

error of less than 11% for the soils involved. 

Building on these correlations, this study investigates the relationship between 

basic geotechnical properties and UCS values using statistical and ANN-based 

approaches. This study focuses on relating the basic geotechnical parameters to the 

UCS of soil via the use of statistically based and ANN approaches. These findings will 

support ongoing research on levee soil erosion by estimating erodibility coefficients 

and critical shear strength from UCS values using Jet Erosion. Accordingly, we are 

utilizing both linear and non-linear analysis models and then comparing their accuracy 

measures with the one obtained via the ANN-based model. The importance of this 

study is exploring the potential of ANN to enhance the predictability of UCS. ANN 

models have not been widely adopted as practical tools for geotechnical field and 

design engineers. This study bridges the gap between academic studies and practical 
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geotechnical engineering applications by providing an easy-to-use spreadsheet with 

over 80% accuracy. 

2. Material and methods 

2.1. Materials 

In this study, two different types of soil were collected from the National 

Sedimentation Lab (NSL) in Oxford, Mississippi. Soils used in this study were low 

plasticity silty clay (CL-ML) with sand and high plasticity silty clay (CH-MH). Soils 

were stored in sealed plastic buckets. Each soil was separated by sieve #200 and used 

to generate different artificial soil mixtures, ranging from (95% coarse: 5% fine) to 

(5% coarse: 95% fine) with a 5% step. Creating a range of synthetic soils is considered 

in this study to enhance the soil results spectrum, in which a 152 results database were 

generated. Table 1 shows soil mixtures used to perform the basic geotechnical tests of 

each soil separately, including Atterberg’s limits, bulk density, and unconfined 

compressive strength. Soil mixtures were oven dried at a temperature of 105 ℃ for 24 

h and kept in sealed plastic buckets. Soil mixtures were oven dried at a temperature of 

105 ℃ for 24 h and kept in sealed plastic buckets. The optimum moisture content of 

the parent soil was 15%, as shown in Figure 1. Therefore, 10% and 15% water content 

are used for soil mixing, considering the optimum and dry side of the compaction 

curve. Optimum moisture is the water content at which soil is compacted in most 

geotechnical applications, including levees [12]. This aligns with the study’s objective 

of providing a design guideline for practicing engineers. 

Table 1. Sample of soil mixtures. 

No. Mixtures 
Percentage (%) 

(Retained on Sieve No.200) (Passing on Sieve No.200) 

1 95% C:5% F 95 5 

2 90% C:10% F 90 10 

3 85% C:15% F 85 15 

4 80% C:20% F 80 20 

. 

. 

. 

. 

. 

16 20% C:80% F 20 80 

17 15% C:85% F 15 85 

18 10% C:90% F 10 90 

19 5% C:95% F 5 95 

Notes: C: Coarse particles, F: Fine particles. 
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Figure 1. Parent soil compaction curve. 

2.2. Laboratory experiments  

To determine the bulk density, soil was compacted in 3 layers with a total of 25 

blows for each layer using the Harvard miniature compaction mold. Each mixture was 

prepared at a water content of 10% and 15% following the ASTM standard [13]. 

Harvard specimens were stored in buckets with careful handling to avoid breakage or 

weaken the samples. Two compacted specimens were tested to determine UCS for 

each water content ending up with 152 total data sets. The compacted soil samples 

were stored in a plastic wrapping and cured for 24 h before tested. 

UCS samples were tested using a uniaxial testing machine to determine the 

compressive strength of soil mixtures based on the ASTM standard [14]. The machine 

is connected to a computerized data logger that records both the load and strain every 

0.001 in of axial deformation of the tested sample. The data is used to draw a stress-

strain diagram for each specimen and determine the soil strength. Each laboratory test 

was done twice, and the average value was taken to reduce human error and increase 

the results’ reliability. Figure 2 shows a typical UCS failure mode for a 10% water 

content mixture. Table 2 shows a sample of UCS results for the soil. 

Atterberg limits are basic geotechnical lab tests that are performed on soil with 

clay content. ASTM [15] standard was carried out in the lab to determine the liquid 

limits and plastic limits for each mixture. Liquid limit is the soil’s water content where 

the soil turns into a flowable like liquid, whereas the plastic limit is where the soil 

turns into plastic [16]. Results from the lab work are used to develop an ANN-based 

model that can predict the UCS value for a given basic geotechnical parameter. 
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Figure 2. UCS failure mode of a 10% water content soil mixture. 

Table 2. Sample UCS and bulk density results for the soil. 

Mixture Water Content (%) Bulk Density (Kip/𝒇𝒕𝟑) soil UCS (ksf) Soil Liquid limit (%) Plastic limit (%) 

95% Course: 5% Fine 10% 0.1200 8.675 
29.05 18.01 

95% Course: 5% Fine 15% 0.1300 6.7 

5% Course: 95% Fine 10% 0.1210 6.04 
73.00 38.00 

5% Course: 95% Fine 15% 0.1331 4.70 

3. Results and discussion  

3.1. Laboratory tests results 

Table 3 shows a statistical summary of the laboratory test results. UCS values 

varied between 0.1306 and 18.37 ksf with an average of 5.014 ksf. According to [17], 

soil is classified as very soft if its UCS is less than 0.25 ksf and hard if its UCS is 

greater than 8 ksf. This indicates that the range of soil types included in our database 

covers a wide spectrum. Atterberg’s limits show a high variance, which can be 

justified due to the large difference in fine material content between all mixtures. In 

our case, fine content varies between 95% fines in one mixture to as low as 5% fines 

in another soil mixture. 

Based on [18] bulk density of stiff clay is typically 0.125 kcf and 0.11 kcf for soft 

clay. That range is contained in our database ranges and may indicate a broad range of 

our database. Subsequently, the failure mode of UCS samples was noted to be 

consistent with the one reported in the literature. To better understand the relationship 

among the inputs and their effect on the UCS values, a correlation matrix was 

determined in Table 4. The results indicate that inputs are interdependent and cannot 

be analyzed in isolation. This interdependency limits the feasibility of conducting a 

meaningful sensitivity analysis. 
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Table 3. Statistical analysis for the physical and mechanical properties of the tested 

soil mixtures. 

Parameter Range Mean ST. DV CV% 

UCS (ksf) 0.1036–18.37 5.014 2.7725 55.30 

Plastic Limit (%) 18.01–38 25.550 5.3594 20.98 

Liquid Limit (%) 27–73 40.362 14.900 36.92 

Water Content (%) 10–15 12.5 2.5083 20.07 

Bulk density (kip/ft3) 0.1173–0.1398 0.129 0.0060 4.65 

Percent passing the #200 sieve 95–5 50 0.2748 0.55 

Notes: ST. DV: Standard Deviation, CV: Coefficient of Variation. 

Table 4. Correlation matrix. 

 Coarse Content Fine Content Bulk density Water Content Liquid Limit Plastic Limit UCS (Ksf) 

Coarse Content 1       

Fine Content −1 1      

Bulk density −0.1224 0.1225 1     

Water Content −1.734 × 10−17 2.67 × 10−18 0.8406 1    

Liquid Limit −0.5040 0.5040 0.3149 0.00044 1   

Plastic Limit −0.5266 0.52669 0.27054752 1.9 × 10−17 0.94389 1  

UCS  −0.0557 0.0557 −0.3900 −0.2486 −0.4471 −0.3122 1 

3.2. Multi linear regression model 

MLR is mainly used in relating the one dependent parameter (Y) to one or more 

independent variables (X). Lab results were first processed using linear regression 

using the Excel Data ToolPak. The MLR model is used herein as a benchmark of 

accuracy for our study. Equation (1) shows the empirical MLR equation: 

𝑈𝐶𝑆 = −0.6211 + 7.535 × C + 135.349 × Bulk Density − 0.0836 × Water content + 0.9714 × Liquid limit

− 1.3854 × Plastic limit 
(1) 

The accuracy results are found to be R2 = 44.5% and ASE of 3.92. Table 5 shows 

a sample of the predicted and actual UCS values based on the results for the linear 

trained model. Figure 3 compares the actual and model-predicted UCS values. As the 

linear regression model achieves a moderate precision accuracy, this indicates that the 

database can be characterized by utilizing better methods. In this study, accuracy 

measurements for all models will be compared to sort out the best performing model. 

Table 5. Sample results of predicted vs actual UCS values. 

Mixture Water Content (%) Actual UCS (ksf) 
Predicted UCS linear model 

(ksf) 

Predicted UCS nonlinear model 

(ksf) 

95% Course: 5% Fine 10% 10.7 10.2 9.5 

95% Course: 5% Fine 15% 6.5 7.7 7.0 

90% Course: 10% Fine 10% 7.4 7.8 7.6 

90% Course: 10% Fine 15% 4.3 5.3 5.0 

5% Course: 95% Fine 10% 6.16 9.1 8.3 

5% Course: 95% Fine 15% 4.8 4.5 5.7 
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Figure 3. MLR prediction model. 

3.3. Multi nonlinear regression model 

The best nonlinear regression model was determined using Excel Solver, which 

is shown in Equation (2). 

𝑈𝐶𝑆 = −0.6211 + 7.535 × C0.49 + 135.349 × Bulk Density1.34

− 0.0836 × Water content0.96 + 0.9714 × Liquid limit0.98

− 1.3854 × Plastic limit0.91 

(2) 

MNLR showed better accuracy measurements than MLR, with R2 = 49.2% and 

ASE of 3.63. This improvement is due to the nonlinear relation that was oversimplified 

using the MLR approach. Table 5 summarizes a sample result of the nonlinear model 

prediction vs actual UCS. Figure 4 visually displays accuracy measurement by 

plotting the actual UCS values against the predicted values by the MNLR model. 
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Figure 4. MNLR prediction model. 

3.4. ANN-based model and structure  

Due to the indirect and uncertain nature of the soil and to increase the prediction 

accuracy, a more sophisticated model was utilized in this study. The backpropagation 

feed-forward ANN is a popular approach used to investigate complex relations 

between inputs and output through hidden layers of computational nodes, as shown in 

Figure 5. In this study, TR-SEQ1 [19], a C++-based code, was utilized to train the 

desired ANN models. The model is based on a sigmoidal function (Equation (3)). Input 

data are normalized to fall between 0 and 1. This normalization ensures that variables 

with naturally low values, such as density, contribute equally during the training phase 

as variables with larger numerical ranges like liquid limit. The model is set at a 

learning rate of 0.8 and it back and forward propagates to determine the optimal 

connection weights. Goodfellow et al. [20] showed that one layer of hidden nodes can 

perform better than multiple layers for many cases. Therefore, the ANN models 

presented herein will only utilize one hidden layer containing multiple nodes. 

𝑈𝐶𝑆predicted
′ = ∑ (sigmoidal(∑(𝑤𝑖𝑗 × 𝑋𝑖) + 𝜃𝑗) × 𝑤𝑗𝑜)

𝑁

𝑖=1

𝑁

𝑖=1
 (3) 

where the predicted 𝑈𝐶𝑆predicted
′  is the normalized value of predicted UCS and N is 

the number of the internal hidden nodes. 𝑤𝑖𝑗 and 𝑤𝑗𝑜 are the connection weights from 

the input node to the internal nodes and from the internal to the output node, 

respectively. 𝑋𝑖 is the normalized value for each input, and 𝜃𝑗 is the internal node bias. 

The database of 152 experimentally based data sets is divided, based on the cross-

validation concept [21], into three main categories: training, testing, and validation. 

Each category is allocated about 50%, 25%, and 25% of the entire database, 

respectively. Then the number of hidden nodes and iterations are adaptably determined 
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for the optimal ANN model based on prediction accuracy statistical measures such as 

R2 and Average Squared Error (ASE) of the trained and tested data sets. Once these 

steps are performed, the optimum model is then validated on its data sets. Following 

the 4-step approach presented by [10], the developed ANN model can then be retrained 

on the entire database (once the number of hidden nodes and iterations are determined) 

in order to capture the hidden features in the testing and validation data sets. This 4-

step approach typically yields better-performing ANN models when compared with 

the traditional training-testing-validation sequence ANN models [10]. 

 

Figure 5. Generic ANN structure. 

The ANN models were trained and tested on a total of 20 hidden nodes. This is 

based on the concept that the number of unknowns should not exceed the number 20 

of equations. In our case, the number of unknowns is the connection weights, and the 

number of equations is the number 10 of datasets (152 datasets). The number of hidden 

nodes (HNs) is designed to fit the database size to prevent overfitting. In general 

practice, when the connection weights (model parameters) do not match up well with 

the number of training datasets, the model might not be able to capture the general 

trend and therefore will lean toward memorization [22]. The starting number of hidden 

nodes can affect the accuracy measurements of the model. Therefore, all the possible 

ANN models considered in this study were trained according to the following 

sequential order: the first model’s training begins with one hidden node, the second 

model’s training begins with two hidden nodes, etc. All models are allowed to 

adaptably expand up to 20 hidden nodes and a maximum of 20,000 iterations for each 

node structure. 

The optimum model, with the highest R2 and lowest ASE, was achieved when 

starting from 1 HN and expanded to 16 HN with 20,000 iterations. The optimal model 

was tested, validated, and fully retrained (according to the 4-step modeling approach 

presented before) over the entire dataset. Table 6 shows the statistical prediction 

accuracy summary for the model. Figure 6 shows a graphical comparison between the 

predicted and actual UCS values for the fully re-trained optimal model. Figure 6 also 

shows a higher accuracy when UCS values are lower than 15 ksf due to the lack of 

training datasets with UCS over 15 ksf. Moreover, as noted in Figure 5, the model is 

more accurate in predicting UCS values in the 0 to 10 ksf range. 
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Table 6. Statistical accuracy summary for the optimal ANN model. 

 R2 (%) ASE Iteration/node 

Training 89 0.001806 20,000 

Testing 80 0.00315 20,000 

Validation 89 0.001806 20,000 

Full re-training 84 0.002869 20,000 

 

Figure 6. UCS (predicted) versus UCS (actual) using ANN model trained at full 

dataset. 

3.5. Model performance comparison 

Comparing the traditional regression-based models (MLR and MNLR) with the 

optimum ANN model, developed herein, it is apparent that the developed ANN model 

yields better prediction accuracy measures in terms of R2 and ASE. For example, 

Linear regression model gives an R2 value that is lower than the one obtained by the 

ANN model by more than 45% and also higher ASE error by more than 1.350%. 

Similarly, the non-linear regression model gives an R2 value that is lower than the one 

obtained by the ANN model by more than 40% and also a higher ASE error by more 

than 1.250%. Due to the complex relations between the input variables and the desired 

UCS output, ANN model was able to capture these relationships in an efficient way 

due to the ANN structure and modeling approach. It is well known that ANN-based 

models are the best function approximators for databases similar to the one discussed 

in this study [10,19,22]. 

3.6. Model utilization via graphical user interface (GUI) 

An Excel spreadsheet is designed as a workspace for ANN users. The connection 

weights of the ANN are implemented at the back end of the spreadsheet, making it 

easy to share and reuse with open access for everyone. Users only need to insert their 

inputs to predict UCS values based on the trained ANN model. Also, a recommended 

range for each input is provided for better accuracy. The stated ranges are based on 

the available database. Although the user is free to enter any value outside the ranges, 

accuracy is not guaranteed as the ANN will extrapolate outside the training ranges. 

Figure 7 shows the GUI, and it is accessible to users upon request from the 
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corresponding author. The GUI is straightforward to use. For instance, Figure 7 

illustrates the following user inputs: The fraction of coarse material retained on sieve 

#200 is 0.7, the fraction of fine material passing sieve #200 is 0.3, bulk density (ksf) 

is 0.1373, water content is 15%, the liquid limit (LL) is 41.55%, and the plastic limit 

(PL) is 23.76%. The trained model predicted a UCS value of 2.602779 ksf with 83% 

certainty. This prediction can assist field engineers and designers once they obtain 

basic soil properties. 

 
Figure 7. ANN-based graphical user interface (GUI). 

4. Concluding 

UCS is a widely used soil shear parameter in most geotechnical engineering 

projects. This study aimed to introduce a prediction model for UCS values based on 

soil basic parameters. The database was first processed by conventional regression 

models MLR and MNLR using Excel Data ToolPak. Key findings include: 

• The MLR and MNLR models showed a moderate predictive accuracy of R2 = 

44.5% and ASE of 3.63, and R2 = 49.2% and ASE of 3.92, consecutively. 

• Twenty ANN models were trained, and the optimal ANN was achieved at 16 HN 

and 20,000 iterations. The optimal ANN model yields a high accuracy of R2= 

84% and ASE = 0.002869. 

• The developed GUI will help geotechnical engineers estimate UCS values in 

designing and analyzing projects, which will reduce reliance on extensive 

laboratory testing. 

Future studies will focus on integrating UCS values with soil hydraulic 

characteristics such as erosion and shear strength; an expanded database is available. 

Author contributions:  Conceptualization, YN and HY; methodology, YN and HY; 

software, MA; validation, YN, MA and HS; formal analysis, MA and YN; 



Insight-Statistics 2025, 8(1), 703.  

12 

investigation, MA and HS; resources, YN and AAO; data curation, MA and HS; 

writing—original draft preparation, MA and YN; writing—review and editing, MA 

and YN; visualization, MA; supervision, YN and AAO; project administration, AAO 

and YN; funding acquisition, AAO and YN. All authors have read and agreed to the 

published version of the manuscript. 

Conflict of interest: The authors declare no conflict of interest. 

References 

1. Yokoi H. Relationship between soil cohesion and shear strength. Soil Science and Plant Nutrition. 1968; 14(3): 89–93. 

2. Keaton JR. Angle of Internal Friction. In: Bobrowsky P, Marker B (editors). Encyclopedia of Engineering Geology. 

Springer; 2020; pp. 1–2. 

3. Motaghedi H, Eslami A. Determining soil shear strength parameters from CPT and CPTu data. Scientia Iranica. 2013; 20(5): 

1349–1360. 

4. Bai Y, Liu J, Song Z, et al. Unconfined Compressive Properties of Composite Sand Stabilized with Organic Polymers and 

Natural Fibers. Polymers. 2019; 11(10): 1576. doi: 10.3390/polym11101576 

5. Wu Y, Li Y, Niu B. Assessment of the Mechanical Properties of Sisal Fiber‐Reinforced Silty Clay Using Triaxial Shear 

Tests. The Scientific World Journal. 2014. 

6. Rabab’ah SR, Sharo AA, Alqudah MM, et al. Effect of using Oil Shale Ash on geotechnical properties of cement-stabilized 

expansive soil for pavement applications. Case Studies in Construction Materials; 2023; 19: e02508. 

7. Kim M, Okuyucu O, Ordu E, et al. Prediction of undrained shear strength by the GMDH-type neural network using SPT-

value and soil physical properties. Materials. 2022; 15(18): 6385. 

8. Farsi S, Esmaeili M, Naseri R. Effect of rock strength on the degradation of ballast equipped with under sleeper pad using 

discrete element method. International Journal of Science and Research Archive. 2024; 11(1): 2579–2586. 

9. Afolagboye LO, Ajayi DE, Afolabi IO. Machine learning models for predicting unconfined compressive strength: A case 

study for Precambrian basement complex rocks from Ado-Ekiti, Southwestern Nigeria. Scientific African. 2023; 20: e01715. 

10. Najjar YM, Huang C. Simulating the stress–strain behavior of Georgia kaolin via recurrent neuronet approach. Computers 

and Geotechnics. 2007; 34(5): 346–361. 

11. Jiang Q, Cao M, Wang Y, et al. Estimation of soil shear strength indicators using soil physical properties of paddy soils in 

the plastic state. Applied Sciences. 2021; 11(12): 5609. 

12. Cokca E, Erol O, Armangil F. Effects of compaction moisture content on the shear strength of an unsaturated clay. 

Geotechnical and Geological Engineering. 2004; 22: 285–297.  

13. Wilson SD. Suggested method of test for moisture-density relations of soils using Harvard compaction apparatus. In: Special 

Procedures for Testing Soil and Rock for Engineering Purposes: Fifth Edition. ASTM International; 1970. 

14. American Society for Testing and Materials. ASTM D2166: Standard Test Method for Unconfined Compressive Strength of 

Cohesive Soil. ASTM International; 2016. 

15. American Society for Testing and Materials. ASTM D4318–17e1: Standard Test Methods for Liquid Limit, Plastic Limit, 

and Plasticity Index of Soils. ASTM International; 2018. 

16. Oikonomou N, Mavridou S. The use of waste tyre rubber in civil engineering works. In: Sustainability of construction 

materials. Woodhead Publishing; 2009. pp. 213–238. 

17. Hastuty IP. Comparison of the use of cement, gypsum, and limestone on the improvement of clay through unconfined 

compression test. Journal of the Civil Engineering Forum. 2019; 5(2). 

18. Lindeburg MR. Civil Engineering Reference Manual for the PE Exam, 7th ed. Professional Pubns Inc; 1999. 

19. Najjar YM, Ali HE, Basheer IA. On the use of neuronets for simulating the stress-strain behavior of soils. In: Numerical 

Models in Geomechanics. CRC Press; 1999. pp. 657–662. 

20. Goodfellow I, Bengio Y, Courville A. Deep learning. MIT press; 2016. Volume 196. 

21. Stone M. Cross-validation: A review. Statistics: A Journal of Theoretical and Applied Statistics. 1978; 9(1): 127–139. 

22. Shahin MA, Jaksa MB, Maier HR. State of the Art of Artificial Neural in Geotechnical Engineering. Electronic Journal of 

Geotechnical Engineering. 2008. 


