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Abstract: There is an increasing need for preventive health care as well as precise diagnosis 

and tailored treatment of different diseases in recent years. Providing customized treatment for 

each patient and maximizing accuracy and efficiency are main goals of a good healthcare 

system. This thesis explores the integration of digital twin technology with Industry 4.0 in 

healthcare. Digital twins create virtual representations of physical systems, enabling real-time 

monitoring and tailored treatments. Key elements include the living human body, IoT, digital 

twin, cloud computing, and simulation. The architecture comprises data acquisition, data 

munging, data storage, data simulation with analytics, and user access layers. Creating a digital 

twin involves precise 3D modeling, representing the entire body or specific organs. A case 

study demonstrates real-time monitoring using wearable sensors for blood pressure, blood 

sugar, and heart rate. Data is transmitted, integrated with the digital twin, and accessible via a 

website with alarms for abnormal readings. While Industry 4.0 and digital twin adoption in 

healthcare is evolving, the architecture serves as a reference. It offers real-time data for 

diagnosis and treatment, with potential for advanced simulations. Challenges include 

automated data systems and privacy concerns. Despite limitations, this integration holds 

promise for precision medicine and personalized healthcare. 
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1. Introduction 

A A digital twin is a virtual representation of a physical system, process, or 

product, serving as a bridge between the physical and digital realms. It is integrated 

into Industry 4.0 through the utilization of sensors to gather real-time data from its 

physical counterpart [1]. This data is then employed to create simulations, utilizing 

various analytical techniques, software programming, and modeling, to understand its 

behavior in real-world scenarios. Several case studies have been conducted, 

employing different scenarios and varying parameters, aiding researchers, engineers, 

scientists, and medical professionals in making informed decisions. Digital twins are 

also referred to as virtual twins, virtual prototypes, or digital asset management [2–4]. 

The inception of a digital twin involves its creation by specialists to draw conclusions 

and enhance decision-making. These digital counterparts receive input from IoT-based 

sensors, which collect data from their physical counterparts, enabling real-time 

simulation. This process facilitates insights into potential issues and can serve as a 

virtual prototype before physical production. Digital twin technology finds 

applications in various industries such as manufacturing, agriculture, and aerospace 

engineering, aiming to enhance system efficiency, reliability, and fault detection [5–

7]. Recently, developed countries have started implementing digital twin technology 
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alongside Industry 4.0 in healthcare and medical science [8]. This convergence of 

Industry 4.0 and digital twins is being widely adopted across various domains. 

Traditional drug therapy faces limitations such as medication ineffectiveness, and 

personalized medicine has gained prominence in healthcare [9–11]. Precision 

medicine, which considers genetic, environmental, and lifestyle factors, has garnered 

attention, and digital technology has been used to construct virtual physiological 

models for clinical applications [12–14]. Advancements in big data, cloud computing, 

virtual reality, and the Internet of Things (IoT) have paved the way for digital twin 

applications in healthcare. Digital twins are evolving into virtual replicas of human 

organs, tissues, cells, or microenvironments, continuously adapting to real-time data 

and predicting future states, including defects and failures. They optimize processes 

through closed-loop interactions with their surroundings [15–17]. Digital twins 

encompass two categories of technologies: statistical models driven by data and 

mechanical models integrating multi-scale knowledge and data. Numerical models 

calculate structural performance, while AI models trained with samples and data 

provide real-time insights from sensors [18,19]. Digital twins have revolutionized 

various industries, enhancing efficiency and problem detection [20]. Healthcare is an 

emerging domain where digital twins can have a significant impact [21]. In healthcare, 

digital twins can treat patients as virtualized assets, enabling their utilization in diverse 

healthcare scenarios [22,23]. This review explores the progress and potential 

applications of digital twin technology in medicine, highlighting its future 

opportunities and existing challenges in digital healthcare. Industry 4.0 aims to 

advance medical technology by integrating physical systems with the Internet of 

Things (IoT), cyber-physical systems (CPSs), big data, and cloud computing [24–26]. 

The incorporation of digital twins into this framework creates a robust platform for 

real-time parameter monitoring, enabling intelligent decision-making through 

simulation and modeling [27]. This paper discusses the architecture and integration of 

digital twins with Industry 4.0, providing insights through a patient case study, 

demonstrating its potential to benefit humanity through continued evolution and 

advancement. 

2. Materials and method 

Digital twin technology key elements and architecture will be studied in detail 

along with the integration of digital twin with Industry 4.0. The making of the digital 

twin procedure is also discussed with architecture. The application of Industry 4.0 with 

digital twin is tested on a human being and a model case study was presented and 

tested its work in the real case application. 

3. Key elements of Industry 4.0 and digital twin for health care 

The key elements of Industry 4.0 and the digital twin structure are fundamental 

in creating a dynamic and responsive environment known as smart healthcare. These 

elements interact harmoniously with physical systems and the living human body, 

particularly patients, to enable real-time monitoring and tailored treatments, even in 

emergency situations. 

Living human body (patient): The central component of this framework is the 
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human being, often a patient, whose health conditions require continuous monitoring 

and potential intervention. This can involve individuals in need of ongoing care or 

those who have previously undergone treatments and need real-time monitoring to 

generate alerts in case of emergencies. 

Internet of things (IoT): IoT extends internet connectivity to a wide range of 

devices, including sensors, laptops, computers, tablets, mobile phones, and more. 

These devices are distributed globally and communicate with users and physical 

systems, enabling remote monitoring and informed decision-making [28]. 

Digital twin: The digital twin represents a virtual replica of the patient, allowing 

for comprehensive monitoring of their health condition. Additionally, various digital 

twin representations of different body parts are created in the cyber space to facilitate 

simulations and support decision-making processes. These digital twins are 

constructed according to established procedures. 

Cloud computing: Cloud computing is the backbone of this ecosystem, offering 

shared pools of configurable computer systems that can be rapidly accessed over the 

Internet. Cloud computing relies on resource sharing to achieve coherence and cost-

effectiveness, much like a public utility. Doctors, researchers, and healthcare 

professionals use cloud computing resources to conduct simulations, leveraging 

various software, analytics, and modeling tools to make informed decisions regarding 

patient treatment. 

Digital twin technology goes beyond healthcare and extends into other domains 

such as personalized medicine, precision public health, and smart medicine 

manufacturing. It has the potential to revolutionize the healthcare sector by providing 

a platform for real-time monitoring and data-driven decision-making, ultimately 

improving patient outcomes and the efficiency of healthcare delivery. 

In summary, the integration of these key elements—the living human body, IoT, 

digital twin, cloud computing, and simulation—forms the foundation of Smart 

Healthcare, enabling proactive monitoring and personalized treatments for patients 

while also contributing to advancements in medical research and healthcare 

manufacturing processes. 

4. Basic architecture of Industry 4.0 and digital twin structure 

The architecture of Industry 4.0 integrated with digital twin comprises five 

essential layers, each tailored and customized to meet the specific requirements of 

healthcare and treatment applications: 

Data acquisition layer: This foundational layer involves the collection of data 

from various sources, primarily through IoT-based sensors that are integrated with the 

physical human being (typically the patient). These sensors gather real-time data on 

the patient’s health status and transmit it to a central cloud server for processing and 

analysis. 

Data munging layer: Once the data is acquired, it is passed to the data munging 

layer. Here, data preprocessing and transformation tasks take place. Data cleaning, 

normalization, and formatting ensure that the data is in a suitable state for further 

analysis. This layer plays a crucial role in preparing the data for meaningful insights 

[29]. 
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Data storage layer: Data storage and management are handled by this layer. 

Specialized data warehousing systems are employed to store the collected data. 

Backup and disaster recovery systems are also integrated to ensure data integrity and 

availability [30]. 

Data simulation with analytics layer: In this layer, data analysis is performed to 

derive valuable insights. Algorithms and software programs are applied to the 

preprocessed data to generate simulations, conduct analytics, and develop predictive 

models. Human intervention may also play a role in interpreting the results and making 

informed decisions based on the analysis [29]. 

User access layer: The user access layer serves as the interface through which 

authorized users can interact with the system. To ensure data protection and privacy, 

users are required to authenticate themselves using a user ID and password. This layer 

enables healthcare professionals, researchers, and relevant stakeholders to access and 

utilize the data for monitoring, analysis, and decision-making purposes [30]. 

This integrated architecture eliminates the need for manual data collection 

systems and facilitates real-time data acquisition and analysis. It ensures data integrity, 

security, and accessibility while enabling healthcare professionals to make informed 

decisions based on the insights derived from the digital twin and Industry 4.0 

technologies. 

5. Making of digital twin for health care 

The process of creating a digital twin is depicted in Figure 1, involving the use 

of AutoCAD and 3D modeling techniques. This procedure commences with the 

acquisition of precise dimensions from the physical object being replicated. The 

design is then meticulously crafted, and a virtual prototype is developed. This virtual 

representation is subsequently crosschecked against the actual physical object to 

ensure accuracy and fidelity. 

Digital twins can be constructed for various purposes, encompassing the entire 

human body or specific body parts such as the heart, kidneys, liver, and more. These 

digital twins serve as a foundation for analysis and simulation. For instance, simulating 

the behavior of the heart involves employing fluid dynamics to study blood flow 

patterns, gauge the cardiac system’s ability to withstand pressure, and monitor blood 

flow within veins and arteries while accounting for potential restrictions. 

The advent of digital twin technology holds immense promise for the future of 

precision medicine. Already, it has found applications in the medical field, 

contributing to disease prediction through physical examination and enhancing the 

accuracy of medical diagnostics [31]. By leveraging digital twins, healthcare 

professionals can gain deeper insights into the human body’s complexities and 

variability, ultimately paving the way for more personalized and effective medical 

treatments and interventions. 
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Figure 1. Digital twin for health care. 

6. Integration of digital twin with Industry 4.0 for health care 

Once the digital twin is created following established procedures, it is securely 

stored in the cyber space with a unique identifier assigned to the specific patient for 

whom the digital twin has been generated. All relevant patient information, including 

a detailed health history, is stored in the same dedicated folder associated with the 

patient’s digital twin. This comprehensive repository ensures that both the digital twin 

and the patient’s health data are readily accessible and well-organized for healthcare 

management. To gather the necessary data for monitoring and analysis, IoT-based 

sensors are strategically placed within the human body, as illustrated in Figure 2. 

These sensors continuously collect data and employ wireless technology to transmit 

this data to a cloud-based server. The collected data is stored in the cloud within the 

designated patient folder, where it is seamlessly integrated with the patient’s digital 

twin. Utilizing various software programming tools and algorithms as given in Table 

1, simulations are performed, incorporating data analytics and mathematical modeling. 

This process enables the system to generate meaningful insights and predictions about 

the patient’s health status. Moreover, the collected data can be visualized by 

authorized users at any time, facilitating observation and in-depth analysis. An alarm 

system is integrated with the collected data, configured to trigger alerts based on 

predefined parameters. When specific health metrics or conditions deviate from 

acceptable ranges, the system sends alarms to the user. These alarms prompt 

immediate attention and action. Users can access the system securely using a unique 

user ID and password through various devices such as mobile phones, laptops, and 

desktop computers. This accessibility ensures that users can promptly respond to 

alarms and make informed decisions based on real- time data and system-generated 

alerts. 
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Figure 2. Integration of digital twin with Industry 4.0 for health care. 

Table 1. Software programming tools. 

Sl. No. Software programming Specific use for health and disease analysis 
Software Application reference in 

earlier research  

1 MATLAB Data analysis and visualization [32–34] 

2 Python Statistical analysis and machine learning [35,36] 

3 R Data mining and predictive modeling [37,38] 

4 SPSS Statistical analysis and regression analysis [39] 

The system described here serves a dual purpose, enabling both preventive and 

corrective healthcare measures. It supports ongoing monitoring for patients who have 

previously undergone treatments or surgeries, ensuring their health is continually 

checked in real-time. Additionally, it provides a valuable tool for preventive 

healthcare, offering proactive monitoring and early intervention to maintain and 

improve patients’ overall well-being. 

7. Case study on implementation of Industry 4.0 and digital twin 

In the contemporary landscape of healthcare, the integration of cutting-edge 

technologies has become paramount in enhancing patient care and outcomes. This case 

study delves into the practical application of Industry 4.0 principles and digital twin 

technology in healthcare monitoring, showcasing a tangible example of their 

transformative potential. Through a real-world scenario, we explore the seamless 

integration of wearable sensors, advanced data analytics, and digital twin frameworks 

to revolutionize healthcare monitoring. 

Wearable sensors: At the heart of this innovative approach lies a suite of high-

precision (99.9%) wearable sensors meticulously designed to capture vital health 

parameters. Among these, the Huawei make Band 6 model, Fitbit make Charge 4 

model is used. Strategically placed on the subject’s body, these sensors operate 

seamlessly, continuously monitoring critical health metrics such as blood pressure, 

blood sugar levels, and heart rate. With a minimum data logging frequency of every 5 

min, they ensure the collection of a rich and comprehensive dataset over extended 
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periods. 

Data transmission: The seamless transmission of health data from wearable 

sensors to a central repository forms the backbone of this monitoring system. 

Leveraging secure communication protocols such as Bluetooth Low Energy (BLE) or 

Wi-Fi, the collected data is transmitted wirelessly to a centralized server. This robust 

data transmission mechanism ensures the efficient and reliable transfer of health data, 

safeguarding its integrity and accessibility for further analysis and monitoring. 

Data analysis and monitoring: Harnessing the power of advanced software 

algorithms and machine learning techniques, the collected health data undergoes 

rigorous analysis and monitoring. Platforms such as MATLAB or Python, 

supplemented by TensorFlow or Scikit-learn libraries, serve as the foundation for 

sophisticated data analytics. These algorithms provide real-time insights into current 

health metrics and historical data trends, empowering continuous monitoring and early 

detection of abnormalities. By employing state-of-the-art analytical tools, healthcare 

providers gain invaluable insights into patient health status, enabling timely 

interventions and personalized care strategies. 

Data alarms: Central to this monitoring system are customizable alarm thresholds 

tailored to individual patient profiles and clinical guidelines. When health readings 

deviate from predefined thresholds depending on the condition of the patient which is 

variable and set as per doctor’s advice, alerts are promptly triggered and transmitted 

to the user’s mobile devices. This proactive approach ensures timely intervention and 

mitigates potential health risks, enhancing patient safety and well-being. 

Data quality assurance: Ensuring the accuracy and reliability of collected health 

data is paramount to the success of this monitoring system. Rigorous validation 

processes, including sensor calibration, accuracy checks, and outlier detection 

algorithms, are meticulously executed. Regular calibration of sensors in every 6 

months through the certified labs against reference standards and validation protocols 

uphold data accuracy and integrity. Furthermore, robust encryption protocols 

safeguard patient privacy and confidentiality, instilling trust and confidence in the 

system’s data security measures. 

Digital twin integration: A hallmark of this innovative approach is the seamless 

integration of patient health data with digital twin technology. By creating a virtual 

replica of the patient’s physiological state and health conditions, digital twin 

integration enables real-time monitoring and simulation through a dedicated virtual 

space. This virtual representation facilitates personalized healthcare interventions, 

predictive analytics, and scenario-based simulations, empowering healthcare 

providers with actionable insights and decision-making support. 

As demonstrated in Figure 3, historical data collected over a day reveals specific 

health parameter fluctuations. For instance, it highlights instances where the diastolic 

blood pressure spiked to 142 mm Hg, while the systolic blood pressure dropped to 79 

mm Hg. This level of detail enables healthcare providers and patients to closely track 

health trends and respond to potential health issues promptly. 
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Figure 3. Blood pressure trend data of patent collected online. 

Overall, this case study showcases the practical application of Industry 4.0 and 

digital twin technology in healthcare, offering real-time monitoring, data analysis, and 

early intervention capabilities to improve patient well-being and healthcare outcomes. 

As shown in Figure 4, the historical data collected in the system is being 

crosschecked where it is observed that the blood sugar level has gone up to 200 mg/dL 

and the blood sugar level has gone down to 122 mg/dL. The data is collected for one 

day and the frequency for data logging is set for every 5 min. 

As shown in Figure 5, the historical data collected in the system is being 

crosschecked where it is observed that the heart beat level has gone up to 105 numbers 

per minute and the heart beat level has gone down to 81 numbers per minute. The data 

is collected for one day and the frequency for data logging is set for every 5 min. 

 

Figure 4. Blood sugar level trend data of patient collected online. 

 

Figure 5. Heart beat trend data of patient collected online. 
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8. Observation and discussion 

From the above study it is clear that the application of Industry 4.0 and digital 

twin is in the evolving stage in the field of health care. The architecture discussed in 

the thesis is used for a single case scenario. Different architectures can be developed 

as per the requirements of the specific case. It will be used as a reference for 

developing other architectures. The case study conducted on a patient also represents 

a basic application of the digital twin technology along with Industry 4.0. Different 

data related to blood pressure, blood sugar level, heart beat has been collected online 

on a real-time basis from the patent. The alarm is also generated and received by the 

patient on his mobile phone as per the set value for all the parameters i.e., blood 

pressure, heart beat and blood sugar. This data can be used by doctors for diagnosis 

and treatment. This type of data for a prolonged period can be really helpful and used 

for simulation and drawing inference by using different mathematical and logical 

algorithms. 

9. Limitations 

Despite its unique advantages due to the unavailability of real-time 

biomechanical analysis, it is difficult to analyze without a complete automated data 

system which needs to be fed manually. Complex digital twin models with high 

accuracy and flexibility like soft tissues are still a limitation to constructing in 3D 

modelling. Online data collection on a real-time basis by using sensors without any 

interruption is still a challenge as human beings and their privacy are involved in this 

framework. 

10. Conclusion 

The integration of Industry 4.0 principles and digital twin technology represents 

a significant advancement in the realm of smart healthcare. By seamlessly blending 

cutting-edge technologies with traditional healthcare practices, this integration offers 

a transformative approach to preventive health care, precise diagnosis, and tailored 

treatment modalities. The amalgamation of wearable sensors, advanced data analytics, 

and digital twin frameworks enables real-time monitoring, data-driven insights, and 

proactive interventions, thereby enhancing patient outcomes and elevating the quality 

of care. 

Through the presented case study, it becomes evident that the application of 

Industry 4.0 and digital twin technology in healthcare is still evolving. While the 

discussed architecture serves as a foundational framework, its adaptability allows for 

the development of tailored solutions to address specific healthcare needs. Real-time 

data collection and alarm generation empower both patients and healthcare providers 

to monitor health conditions actively and initiate timely interventions, thereby 

improving patient well-being and healthcare delivery. 

However, despite its numerous advantages, challenges such as the unavailability 

of real-time biomechanical analysis and the need for complete automated data systems 

persist. Complexities associated with constructing accurate and flexible digital twin 

models, particularly regarding soft tissues, remain a limitation. Additionally, ensuring 
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uninterrupted online data collection while safeguarding patient privacy poses ongoing 

challenges. 

Despite these limitations, the integration of Industry 4.0 and digital twin 

technology holds immense promise for the future of healthcare. As advancements 

continue, the potential for precision medicine and personalized healthcare 

interventions becomes increasingly attainable. By addressing current challenges and 

leveraging emerging technologies, stakeholders across the healthcare spectrum can 

position themselves at the forefront of this paradigm shift, ushering in a new era of 

intelligent and patient-centric healthcare solutions. 
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