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Abstract: Autonomous driving has spurred the development of sensor fusion techniques, which combine data from 
multiple sensors to improve system performance. In particular, a localization system based on sensor fusion, such as 
Visual Simultaneous Localization and Mapping (VSLAM), plays a crucial role in environment perception and serves as 
the foundation for decision-making and motion control in intelligent vehicles. The accuracy of extrinsic calibration 
parameters between the camera and IMU is of utmost importance for precise positioning in VSLAM systems. However, 
existing calibration methods are often time-consuming, rely on complex optimization techniques, and are sensitive to 
noise and outliers, leading to potential degradation in system performance. To address these challenges, this paper presents 
a fast and accurate camera-IMU calibration method based on space coordinate transformation constraints and SVD 
(Singular Value Decomposition) tricks. The method involves constructing constraint equations by ensuring the equality 
of rotation and transformation matrices between camera frames and IMU coordinates at different time instances. 
Subsequently, the external parameters of the camera-IMU system are solved using quaternion transformation and SVD 
techniques. To validate the proposed method, experiments were conducted using the ROS (Robot Operating System) 
platform, where camera images and velocity, acceleration, and angular velocity data from the IMU were recorded in a 
ROS bag file. The results demonstrate that the proposed method achieves reliable camera-IMU calibration parameters, 
requiring less tuning time and exhibiting reduced uncertainty. 
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1. Introduction 
The rapid development of artificial intelligence has sparked a growing interest in autonomous driving, 

which holds the promise of transforming transportation systems by enhancing safety, improving efficiency, 
and alleviating traffic congestion[1]. Within the field of autonomous driving, the localization system plays a 
crucial role by utilizing a diverse range of sensors for high-precision positioning. It provides the foundation 
for decision-making, planning, and control execution in intelligent vehicles. Improved localization precision 
has significant implications for the Intelligent Transportation System (ITS), enabling more informed route 
selection and dynamic path guidance[2]. 

Various positioning methods are employed in intelligent vehicles, including GPS, UWB positioning, 
LiDAR positioning, RFID positioning, visual positioning, RTK positioning, IMU positioning, and DR map 
matching[1–3]. However, each method has its limitations and lacks generalization capabilities. To address these 
limitations, multi-sensor fusion technology is utilized, integrating data from different sensors to enhance the 
accuracy, stability, and generalization capabilities of positioning systems. Fusion techniques such as GPS/IMU, 
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vision/IMU, GPS/vision, GPS/DR, LiDAR/IMU, LiDAR/GPS, and LiDAR/GPS/RTK are commonly 
employed to leverage the strengths of individual sensors. 

IMU positioning involves obtaining velocity, position, and rotation information using the built-in three-
axis gyroscopes and three-axis accelerometers[3]. This method relies on internal sensors, providing high 
positioning accuracy in a short time without relying on external environments. However, IMU sensors, 
including accelerometers and gyroscopes, have inherent biases, and measurement errors accumulate over time, 
making them unsuitable for long-term positioning requirements. In contrast, visual positioning does not suffer 
from drift and can directly measure rotation and translation. It is commonly used to calibrate the errors in IMU 
measurements using low-cost camera sensors. Furthermore, IMU sensors can estimate absolute scale and 
effectively respond to rapid motions and rotations, compensating for the limitations of visual positioning, such 
as the inability to measure scale and the loss of measurement information during fast movements[4]. As a result, 
the camera-IMU localization system has become a mainstream sensor-fusion positioning method due to its 
advantages of low cost, high efficiency, high accuracy, convenience, and speed. 

In the camera-IMU localization system, camera and IMU calibration plays a crucial role in achieving 
accurate data integration. It enables the alignment of visual information from cameras with inertial 
measurements from IMUs, ensuring precise and synchronized perception for robust decision-making in 
autonomous systems. The calibration process encompasses camera intrinsic parameters, IMU intrinsic 
parameters, and camera-to-IMU extrinsic calibration. Camera intrinsic parameters define the projection 
relationship between the three-dimensional real world and the camera coordinate system. These parameters, 
including focal length, principal point, and distortion coefficients, are essential for maintaining the accuracy 
of the camera’s data source. They directly impact the quality and accuracy of the captured images. IMU 
intrinsic parameter calibration focuses on parameters related to deterministic errors and random errors. 
Deterministic errors refer to systematic biases or scale factors that consistently affect the IMU measurements. 
They can arise from factors such as sensor misalignments, temperature variations, and nonlinearity in sensor 
response. Calibration helps estimate and compensate for these deterministic errors, thereby improving the 
accuracy and reliability of the IMU measurements. Random errors, on the other hand, are typically caused by 
noise and uncertainties in the IMU sensors. These errors have statistical properties, such as a zero mean and a 
Gaussian distribution. The calibration of the IMU aims to characterize and minimize these random errors, 
enhancing the accuracy and precision of the IMU measurements. Camera-to-IMU extrinsic parameters 
establish the transformation between the camera and IMU measurements, aligning them to a common 
coordinate frame. These parameters are particularly crucial for Visual Simultaneous Localization and Mapping 
(VSLAM) systems. Even a slight deviation of 1° to 2° between the calibrated camera sensor coordinate system 
and the IMU coordinate system can significantly degrade the localization accuracy of the VSLAM system[4,5]. 
Therefore, the calibration of cameras and IMUs is a critical step in sensor fusion-based positioning systems. It 
ensures the accuracy and effectiveness of the fusion process, ultimately improving the performance and 
reliability of the overall positioning system. 

Currently, several research efforts are focused on ensuring accurate calibration between cameras and 
IMUs. In terms of intrinsic calibration, Zhang et al.[6] introduced a widely used technique known as Zhang’s 
method. This method utilizes a calibration pattern with known geometry and uses multiple images to estimate 
the camera’s intrinsic parameters. Advancements in camera calibration techniques have also been made, 
including self-calibration methods[7] and techniques based on pattern recognition and optimization 
algorithms[8]. For extrinsic calibration, a common approach involves the use of a calibration target and 
controlled movements. Zhang et al.[9] proposed a method that utilizes a planar calibration target to estimate the 



Insight – Automatic Control (2023) Volume 6 Issue 1 

3 

transformation matrix between the camera and IMU. They employed bundle adjustment techniques to optimize 
the calibration results. Similarly, Brink et al.[10] used a multi-view calibration target to estimate the relative 
pose between the camera and IMU. They employed a Kalman filter-based optimization approach for accurate 
extrinsic calibration. These research efforts highlight the importance of developing accurate calibration 
techniques to ensure precise alignment and synchronization between camera and IMU measurements in sensor 
fusion-based positioning systems. 

Despite these advancements, it is important to acknowledge that camera-IMU calibration techniques still 
have limitations. Sünderhauf et al.[11] have highlighted several challenges associated with these techniques, 
including sensitivity to initialization, the requirement for precise sensor synchronization, and the influence of 
environmental factors on calibration accuracy. These factors can introduce errors into the calibration process 
and subsequently impact the accuracy of the sensor fusion system. Furthermore, existing methods often involve 
time-consuming processes that rely on complex optimization methods, and they can be sensitive to noise and 
outliers, which may arise due to calibration errors. These issues can have a negative impact on the overall 
performance of the system. 

In this paper, we propose a fast and accurate camera-IMU calibration method based on space coordinate 
transformation constraints and SVD (Singular Value Decomposition) techniques. Firstly, we construct 
constraint equations by considering the equality of rotation and transformation matrices between camera 
frames and IMU coordinates at different time instances. Secondly, we solve for the external parameters of the 
camera-IMU using quaternion transformation and SVD techniques. The structure of this paper is as follows: 
Section 1 introduces the calibration process for the camera’s parameters. Section 2 provides details on the 
calibration of the IMU’s parameters. Section 3 presents the innovative calibration method for the camera-IMU 
extrinsic parameters. We present the experimental results in Section 4, and finally, Section 5 concludes the 
paper. 

2. Calibration of camera intrinsic parameters based on pinhole model 
2.1. Pinhole model 

Before extracting image features for positioning, it is crucial to model the camera sensor accurately and 
consistently to ensure reliable input image frames. An image frame represents a two-dimensional image plane 
consisting of pixels with pixel coordinates and brightness information. Meanwhile, corresponding landmarks 
exist in three-dimensional space. Therefore, a camera model is employed to establish the mapping between 
three-dimensional landmarks and the two-dimensional image plane. Various camera models are available, 
including the pinhole camera model[2], stereo camera model[12], and RGB-D camera model[5]. Among these 
models, the pinhole camera model is widely used due to its simplicity and effectiveness, making it suitable for 
camera sensors in visual-inertial odometry systems. Therefore, this paper adopts the pinhole camera model to 
describe the entire mapping process. 

The imaging principle of a camera sensor is illustrated in Figures 1 and 2. 

In the pinhole camera model (Figure 1), a camera coordinate system denoted as Oxyz is established, with 
the camera’s optical center O as the origin. The x-axis aligns with the right side of the camera sensor, the y-
axis aligns with the vertical direction of the camera sensor, and the z-axis aligns with the front direction of the 
camera sensor. Similarly, a camera image plane coordinate system denoted as O'x'y' is established. Assuming 
a point 𝑃𝑃 = [𝑋𝑋,𝑌𝑌,𝑍𝑍]T in the three-dimensional world projects through the pinhole O onto the image plane as 
point 𝑃𝑃′ = [𝑋𝑋′,𝑌𝑌′,𝑍𝑍′]T, and considering the distance between the camera plane and the physical image plane 
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as the focal length f, we can derive the following equation based on the principle of similar triangles in the 
pinhole camera model (Figure 2). 
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Figure 1. Schematic diagram of the pinhole camera model. Figure 2. Schematic diagram of similar triangles. 

 

𝑍𝑍
𝑓𝑓

= −
𝑋𝑋
𝑋𝑋′

= −
𝑌𝑌
𝑌𝑌′

 (1) 

The negative sign in Equation (1) traditionally indicates that the resulting image is inverted. However, in 
practice, the image captured by a camera sensor is not inverted. To better represent the pinhole camera model 
and align with the actual scenario, this paper adopts a convention where the camera image plane is 
symmetrically placed in front of the camera sensor, as illustrated in Figure 3. This convention ensures that the 
resulting image is not inverted and corresponds to the observed scene in a more intuitive manner. 
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Figure 3. Schematic diagram of both the actual image plane and the symmetric image plane in the pinhole camera model. 

By removing the symbols in Equation (1) and rearranging the terms, we can obtain the Equation (2): 

�
𝑋𝑋′ = 𝑓𝑓

𝑋𝑋
𝑍𝑍

𝑌𝑌′ = 𝑓𝑓
𝑌𝑌
𝑍𝑍

 (2) 

Equation (2) describes the three-dimensional spatial relationship between the 3D landmark point P and 
its image point P'. However, when working with camera sensors, the information is acquired in the form of 
individual pixels. Therefore, it is necessary to perform translation and scaling on the image plane coordinate 
system O'x'y' to convert it into the pixel coordinate system ouv, as depicted in Figure 1. By assuming that the 
pixel coordinate system is scaled by α and β along the u and v axes, respectively, and translated by 𝑐𝑐𝑥𝑥 and 𝑐𝑐𝑦𝑦, 
we can establish the relationship between the image point P' and its pixel coordinates [𝑢𝑢, 𝑣𝑣]T as follows: 

𝑢𝑢 = 𝛼𝛼𝑋𝑋′ + 𝑐𝑐𝑥𝑥
𝑣𝑣 = 𝛽𝛽𝛽𝛽′ + 𝑐𝑐𝑦𝑦

 (3) 
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Let 𝑓𝑓𝑥𝑥 = 𝛼𝛼𝛼𝛼 and 𝑓𝑓𝑦𝑦 = 𝛽𝛽𝛽𝛽. By rearranging the equation, we can obtain Equation (4): 

�
𝑢𝑢 = 𝑓𝑓𝑥𝑥

𝑋𝑋
𝑍𝑍

+ 𝑐𝑐𝑥𝑥

𝑣𝑣 = 𝑓𝑓𝑦𝑦
𝑌𝑌
𝑍𝑍

+ 𝑐𝑐𝑦𝑦
 (4) 

By expressing Equation (4) in matrix form and simplifying, we have: 

𝑍𝑍 �
𝑢𝑢
𝑣𝑣
1
� = �

𝑓𝑓𝑥𝑥 0 𝑐𝑐𝑥𝑥
0 𝑓𝑓𝑦𝑦 𝑐𝑐𝑦𝑦
0 0 1

� �
𝑋𝑋
𝑌𝑌
𝑍𝑍
� ≜ 𝑲𝑲𝑲𝑲 (5) 

where the matrix composed of the intermediate quantities is the camera’s intrinsic parameter matrix 𝑲𝑲. Based 
on coordinate transformation knowledge, the coordinates in the camera coordinate system and the coordinates 
in the world coordinate system 𝑷𝑷𝑤𝑤 have the following relationship: 

𝑷𝑷 = 𝑹𝑹𝑷𝑷𝒘𝒘 + 𝒕𝒕 (6) 

where R and t are the rotation matrix and translation matrix that transform coordinates from the world 
coordinate system to the camera coordinate system. The corresponding coordinates 𝑷𝑷𝑢𝑢𝑢𝑢 in the pixel coordinate 
system can be related to the world coordinate system, camera coordinate system, and pixel coordinate system 
as follows: 

𝑍𝑍𝑷𝑷𝑢𝑢𝑢𝑢 = 𝑍𝑍 �
𝑢𝑢
𝑣𝑣
1
� = 𝑲𝑲(𝑹𝑹𝑷𝑷𝑤𝑤 + 𝒕𝒕) = 𝑲𝑲𝑲𝑲𝑷𝑷𝑤𝑤 (7) 

where 𝑻𝑻 = [𝑹𝑹, 𝒕𝒕] is the transformation matrix. In Equation (7), it specifically represents the transformation 
matrix from the world coordinate system to the pixel coordinate system. To facilitate the derivation of the 
camera sensor’s intrinsic parameters, it is common to normalize Equation (7) by setting Z = 1 and perform 
calculations based on the projection on the normalized plane, as illustrated in Figure 4. 
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Figure 4. Schematic diagram of the normalized plane. 

This paper utilizes two constraints to solve the intrinsic parameters. Firstly, when rotating the camera, the 
two rotation vectors along the camera center are orthogonal to each other. Secondly, the magnitude of the 
rotation vector is 1. Based on these constraints, the values of the parameters in the intrinsic parameter matrix 
can be obtained, as shown below. 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧ 𝑓𝑓𝑥𝑥 = �𝜆𝜆 𝐵𝐵11⁄

𝑓𝑓𝑦𝑦 = �𝜆𝜆𝐵𝐵11 (𝐵𝐵11𝐵𝐵22 − 𝐵𝐵122 )⁄

𝑐𝑐𝑥𝑥 = 𝛾𝛾𝑐𝑐𝑦𝑦 𝑓𝑓𝑦𝑦⁄ − 𝐵𝐵13𝑓𝑓𝑥𝑥2 𝜆𝜆⁄
𝑐𝑐𝑦𝑦 = (𝐵𝐵12𝐵𝐵13 − 𝐵𝐵11𝐵𝐵23) (𝐵𝐵11𝐵𝐵22 − 𝐵𝐵122 )⁄

𝛾𝛾 = −𝐵𝐵12𝑓𝑓𝑥𝑥2𝑓𝑓𝑦𝑦 𝜆𝜆⁄
𝜆𝜆 = 𝐵𝐵33 − �𝐵𝐵132 + 𝑐𝑐𝑦𝑦(𝐵𝐵12𝐵𝐵13 − 𝐵𝐵11𝐵𝐵23)� 𝐵𝐵11⁄

 (8) 
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The B matrix is a user-defined matrix, and its definition is as follows: 

𝑩𝑩 = (𝑲𝑲−1)𝑇𝑇𝑲𝑲−1 = �
𝐵𝐵11 𝐵𝐵12 𝐵𝐵13
𝐵𝐵21 𝐵𝐵22 𝐵𝐵23
𝐵𝐵31 𝐵𝐵32 𝐵𝐵33

� (9) 

2.2. Distortion model 
Additionally, the lens on the camera sensor introduces distortion during the projection from the three-

dimensional world to the two-dimensional image plane[13]. The distortion is caused by the optical properties of 
the lens. Therefore, this paper also incorporates a distortion model to accurately describe the projection process 
from the three-dimensional world to the two-dimensional image plane. 

Typically, a lens is placed in front of the camera, resulting in radial distortion as shown in Figure 5. 
Moreover, during the hardware assembly process, it is common for the lens and the imaging plane to have 
slight misalignment, leading to tangential distortion as depicted in Figure 6. 

Normal Image Pincushion Distortion Barrel Distortion  

Vertical Plane

Camera Sensor

 
Figure 5. Schematic diagram of radial distortion. Figure 6. Schematic diagram of tangential distortion 

source. 

Therefore, to improve the imaging results, it is necessary to perform distortion correction on the camera 
sensor. Assuming that tangential distortion and radial distortion follow a polynomial relationship, for any point 
𝑝𝑝 = [𝑥𝑥,𝑦𝑦]T  on the normalized plane, the corrected normalized coordinates [𝑥𝑥dis_r,𝑦𝑦dis_r]T  after radial 
distortion correction are related as follows: 

𝑥𝑥dis_r = 𝑥𝑥(1 + 𝑘𝑘1𝑟𝑟2 + 𝑘𝑘2𝑟𝑟4) (10) 

𝑦𝑦dis_r = 𝑦𝑦(1 + 𝑘𝑘1𝑟𝑟2 + 𝑘𝑘2𝑟𝑟4) (11) 

where 𝑘𝑘1 and 𝑘𝑘2 are radial distortion coefficients, and r is the distance between point p and the coordinate 
origin in polar coordinates. Similarly, for tangential distortion, the corrected normalized coordinates 
[𝑥𝑥dis_t,  𝑦𝑦dis_t]T of point p can be related as follows: 

𝑥𝑥dis_t = 𝑥𝑥 + 2𝑝𝑝1𝑥𝑥𝑥𝑥 + 𝑝𝑝2(𝑟𝑟2 + 2𝑥𝑥2) (12) 

𝑦𝑦dis_t = 𝑦𝑦 + 𝑝𝑝1(𝑟𝑟2 + 2𝑦𝑦2) + 2𝑝𝑝2𝑥𝑥𝑥𝑥 (13) 

where 𝑝𝑝1 and 𝑝𝑝2 are tangential distortion coefficients, and r is also the distance of point p from the origin in 
polar coordinates. Therefore, by combining the operations of radial and tangential distortion correction on 

points in the normalized plane, we obtain the distortion correction parameter matrix 𝑼𝑼𝒅𝒅 = �𝑘𝑘1 𝑘𝑘2
𝑝𝑝1 𝑝𝑝2

� . 

Consequently, we can obtain the normalized coordinates of the undistorted points [𝑥𝑥distorted,𝑦𝑦distorted]T as 
follows: 
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𝑥𝑥distorted = 𝑥𝑥(1 + 𝑘𝑘1𝑟𝑟2 + 𝑘𝑘2𝑟𝑟4) + 2𝑝𝑝1𝑥𝑥𝑥𝑥 + 𝑝𝑝2(𝑟𝑟2 + 2𝑥𝑥2) (14) 

𝑦𝑦distorted = 𝑦𝑦(1 + 𝑘𝑘1𝑟𝑟2 + 𝑘𝑘2𝑟𝑟4) + 𝑝𝑝1(𝑟𝑟2 + 2𝑦𝑦2) + 2𝑝𝑝2𝑥𝑥𝑥𝑥 (15) 

For the distortion correction coefficients, rearranging them into the distortion correction parameter matrix, 
and substituting Equations (14) and (15) into Equation (4), we can derive the expression for projecting the 
undistorted points onto the pixel plane using the intrinsic parameter matrix. It is given as follows: 

�
𝑢𝑢 = 𝑓𝑓𝑥𝑥𝑥𝑥distorted + 𝑐𝑐𝑥𝑥
𝑣𝑣 = 𝑓𝑓𝑦𝑦𝑦𝑦distorted + 𝑐𝑐𝑦𝑦

 (16) 

By utilizing the pinhole camera model and distortion model, the three-dimensional landmarks can be 
projected onto the camera’s two-dimensional image plane, enabling the estimation of the camera’s intrinsic 
parameters. 

3. IMU intrinsic parameters calibration 
3.1. IMU measurement model 

The measurement errors of an IMU mainly consist of Gaussian white noise and biases[1,14]. Therefore, this 
paper considers the random walk of biases and noise in modeling the IMU’s measured acceleration 𝒂𝒂�𝑡𝑡𝑏𝑏 and 
angular velocity 𝝎𝝎�𝑡𝑡𝑏𝑏: 

𝒂𝒂�𝑡𝑡𝑏𝑏 = 𝒂𝒂𝑡𝑡𝑏𝑏 + 𝑹𝑹𝑏𝑏𝑏𝑏𝒈𝒈𝑤𝑤 + 𝒃𝒃𝑎𝑎𝑡𝑡 + 𝒏𝒏𝑎𝑎 (17) 

𝝎𝝎�𝑡𝑡𝑏𝑏 = 𝝎𝝎𝑡𝑡
𝑏𝑏 + 𝒃𝒃𝜔𝜔𝑡𝑡 + 𝒏𝒏𝜔𝜔 (18) 

where 𝑹𝑹𝑏𝑏𝑏𝑏  is the rotation matrix from the world coordinate system to the IMU coordinate system, 𝒈𝒈𝑤𝑤 =
[0, 0,𝑔𝑔]𝑇𝑇  is the gravity vector in the world coordinate system, 𝒃𝒃𝑎𝑎𝑡𝑡  is the acceleration bias, 𝒏𝒏𝑎𝑎  is the 
acceleration noise, ; 𝒃𝒃𝜔𝜔𝑡𝑡 is the angular velocity bias, and n_ω is the angular velocity noise. This paper assumes 

that the acceleration noise n_a and the angular velocity noise 𝒏𝒏𝜔𝜔  follow a Gaussian distribution, i.e., 

𝒏𝒏𝑎𝑎~𝒩𝒩(𝟎𝟎,𝝈𝝈𝑎𝑎2)，𝒏𝒏𝜔𝜔~𝒩𝒩(𝟎𝟎,𝝈𝝈𝜔𝜔2). 

It is further assumed that the acceleration bias 𝒃𝒃𝑎𝑎𝑡𝑡 and the angular velocity bias 𝒃𝒃𝜔𝜔𝑡𝑡 are modeled as a 

bounded random walk and a random walk, respectively, with their first derivatives as follows: 

𝒃𝒃𝑎𝑎𝑡𝑡̇ = −
1
𝜏𝜏
𝒃𝒃𝑎𝑎𝑡𝑡 + 𝒏𝒏𝑏𝑏𝑎𝑎 (19) 

𝒃𝒃𝜔𝜔𝑡𝑡
̇ = 𝒏𝒏𝑏𝑏𝜔𝜔 (20) 

where 𝜏𝜏 is the time constant, 𝒏𝒏𝑏𝑏𝑎𝑎 and 𝒏𝒏𝑏𝑏𝜔𝜔 are the noise of the acceleration bias and the noise of the gyroscope 

bias, respectively, which follow a Gaussian distribution, i.e., 𝒏𝒏𝑏𝑏𝑎𝑎~𝒩𝒩(𝟎𝟎,𝝈𝝈𝑏𝑏𝑎𝑎
2)，𝒏𝒏𝑏𝑏𝜔𝜔~𝒩𝒩(𝟎𝟎,𝝈𝝈𝑏𝑏𝜔𝜔

2). 

3.2. IMU errors 
IMU intrinsic parameter calibration mainly involves parameters related to random errors and 

deterministic errors. The parameters related to random errors include noise and random walk. In the actual 
process of IMU sampling, discretization is required. This paper derives the relationship between the continuous 
and discrete representations of random errors[3,15]. 

Integrating white Gaussian noise over a fixed time interval ∆𝑡𝑡, we can write: 
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𝑛𝑛𝑑𝑑(𝑘𝑘) = 𝑛𝑛(𝑡𝑡 + ∆𝑡𝑡) ≈
1
∆𝑡𝑡
� 𝑛𝑛(𝜏𝜏)
𝑡𝑡+∆𝑡𝑡

𝑡𝑡
𝑑𝑑𝑑𝑑 (21) 

where the covariance is: 

𝐸𝐸�𝑛𝑛𝑑𝑑2(𝑘𝑘)� = 𝐸𝐸 �
1
∆𝑡𝑡2

� � 𝑛𝑛(𝜏𝜏)𝑛𝑛(𝑡𝑡)
𝑡𝑡0+∆𝑡𝑡

𝑡𝑡0

𝑡𝑡0+∆𝑡𝑡

𝑡𝑡0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� =

𝜎𝜎2

∆𝑡𝑡
 (22) 

It can be observed from Equation (22) that the variance of the discrete Gaussian white noise can be 
obtained by dividing the continuous Gaussian white noise variance by a time interval. Similarly, for the integral 
of a bias random walk over a fixed time interval ∆𝑡𝑡, we can express it as follows: 

𝑏𝑏(𝑡𝑡0 + ∆𝑡𝑡) = 𝑏𝑏(𝑡𝑡0) +� 𝑛𝑛𝑏𝑏𝜔𝜔(𝑡𝑡)
𝑡𝑡0+∆𝑡𝑡

𝑡𝑡0
𝑑𝑑𝑑𝑑 (23) 

The covariance can be expressed as: 

𝐸𝐸�𝑏𝑏2(𝑡𝑡0 + ∆𝑡𝑡)� = 𝐸𝐸 ��𝑏𝑏(𝑡𝑡0) + � 𝑛𝑛𝑏𝑏𝜔𝜔(𝑡𝑡)
𝑡𝑡0+∆𝑡𝑡

𝑡𝑡0
𝑑𝑑𝑑𝑑� �𝑏𝑏(𝑡𝑡0) + � 𝑛𝑛𝑏𝑏𝜔𝜔(𝜏𝜏)𝑑𝑑𝑑𝑑

𝑡𝑡0+∆𝑡𝑡

𝑡𝑡0
�� = 𝜎𝜎𝑏𝑏2∆𝑡𝑡 (24) 

Similarly, it can be seen from Equation (22) that the variance of the discrete Gaussian white noise can be 
obtained by simply multiplying the continuous Gaussian white noise variance by a time interval. 

The parameters related to deterministic errors are mainly bias, scale, and misalignment coefficients. In 
this paper, the parameters to be optimized are obtained by constructing loss functions for the accelerometer 
and gyroscope, respectively. 

𝐿𝐿(𝜽𝜽𝑎𝑎𝑎𝑎𝑎𝑎) = ��‖𝒈𝒈‖2 − �ℎ(𝒂𝒂𝑘𝑘𝑏𝑏 ,𝜽𝜽𝑎𝑎𝑎𝑎𝑎𝑎  )�2�
2

𝑀𝑀

𝑘𝑘=1

 (25) 

𝐿𝐿�𝜽𝜽𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔� = ��𝒖𝒖𝑎𝑎,𝑘𝑘 − 𝒖𝒖𝑔𝑔,𝑘𝑘�
2

𝑀𝑀

𝑘𝑘=2

 (26) 

where 𝒈𝒈 is the gravity vector; ℎ(𝒂𝒂𝑘𝑘𝑏𝑏 ,𝜽𝜽𝑎𝑎𝑎𝑎𝑎𝑎) describes the relationship between the IMU’s measured acceleration 
𝒂𝒂𝑘𝑘𝑏𝑏 and the true acceleration in the world, given the estimated parameters 𝜽𝜽𝑎𝑎𝑎𝑎𝑎𝑎 for the accelerometers. 𝜽𝜽𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 
represents the estimated parameters for the gyroscopes. M is the number of intervals considered for 
computation. 𝒖𝒖𝑎𝑎,𝑘𝑘 is the initial gravity estimated from the calibrated accelerometer, and 𝒖𝒖𝑔𝑔,𝑘𝑘 is the calculated 
gravity, as shown below. 

𝒖𝒖𝑔𝑔,𝑘𝑘 = 𝜓𝜓[𝝎𝝎𝑘𝑘
𝑏𝑏 ,𝒖𝒖𝑎𝑎,𝑘𝑘−1] (27) 

4. Camera-IMU calibration 
4.1. IMU pre-intergration model 

Since the sampling frequency of the IMU is significantly higher than that of the camera sensor, this paper 
performs IMU pre-integration by integrating the IMU measurements between two consecutive image frames. 
This enables the alignment of the sampling frequencies of different sensors (camera and IMU). The schematic 
diagram of the IMU pre-integration model can be seen in Figure 7. 
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IMU Pre-integration Value 
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Figure 7. Schematic diagram of IMU pre-integration model. 

Based on the IMU measurement model equations presented in Section 2.1, the position, velocity, and 
rotation information in the world coordinate system can be calculated as follows: 

𝒑𝒑𝑤𝑤𝑏𝑏𝑗𝑗 = 𝒑𝒑𝑤𝑤𝑏𝑏𝑖𝑖 + 𝒗𝒗𝑖𝑖𝑤𝑤𝛥𝛥𝑡𝑡𝑖𝑖  + � (𝑹𝑹𝑤𝑤𝑏𝑏𝑡𝑡�𝒂𝒂�𝑡𝑡
𝑏𝑏 − 𝒃𝒃𝑎𝑎𝑡𝑡 − 𝒏𝒏𝑎𝑎� − 𝒈𝒈𝑤𝑤)

𝑡𝑡∈[𝑖𝑖,𝑗𝑗]
𝑑𝑑𝑡𝑡2 (28) 

𝒗𝒗𝑏𝑏𝑗𝑗
𝑤𝑤 = 𝒗𝒗𝑏𝑏𝑖𝑖

𝑤𝑤 + � (𝑹𝑹𝑤𝑤𝑏𝑏𝑡𝑡�𝒂𝒂�𝑡𝑡
𝑏𝑏 − 𝒃𝒃𝑎𝑎𝑡𝑡 − 𝒏𝒏𝑎𝑎� − 𝒈𝒈𝑤𝑤)

𝑡𝑡∈[𝑖𝑖,𝑗𝑗]
𝑑𝑑𝑑𝑑 (29) 

𝒒𝒒𝑤𝑤𝑏𝑏𝑗𝑗 = � 𝒒𝒒𝑤𝑤𝑏𝑏𝑡𝑡⨂�
0

1
2
𝝎𝝎𝑏𝑏𝑡𝑡�

𝑡𝑡∈[𝑖𝑖,𝑗𝑗]
𝑑𝑑𝑑𝑑 (30) 

where 𝒑𝒑𝑤𝑤𝑏𝑏𝑗𝑗 and 𝒑𝒑𝑤𝑤𝑏𝑏𝑖𝑖 represent the translation from the IMU coordinate system to the world coordinate system 

at time j and time i, respectively. 𝒗𝒗𝑏𝑏𝑗𝑗
𝑤𝑤  and 𝒗𝒗𝑏𝑏𝑖𝑖

𝑤𝑤  represent the IMU’s velocity information in the world coordinate 

system at time j and time i, respectively. 𝒒𝒒𝑤𝑤𝑏𝑏𝑗𝑗 and 𝒒𝒒𝑤𝑤𝑏𝑏𝑖𝑖 are the rotation quaternions from the IMU coordinate 

system to the world coordinate system at time j and time i, respectively. 𝛥𝛥𝑡𝑡𝑖𝑖 is the time interval between the i-
th and j-th image frames. The ⨂ symbol denotes the multiplication operation of quaternions. 

By applying the rotation relationship of the coordinate systems, this paper rotates Equations (28)–(30) 
from the world coordinate system to the IMU coordinate system of the i-th frame. As a result, the continuous-
time IMU pre-integration formula can be obtained as follows: 

𝑹𝑹𝑏𝑏𝑖𝑖𝑤𝑤𝒑𝒑𝑤𝑤𝑏𝑏𝑗𝑗 = 𝑹𝑹𝑏𝑏𝑖𝑖𝑤𝑤 �𝒑𝒑𝑤𝑤𝑏𝑏𝑖𝑖 + 𝒗𝒗𝑖𝑖𝑤𝑤𝛥𝛥𝑡𝑡𝑖𝑖 −
1
2
𝒈𝒈𝑤𝑤𝛥𝛥𝑡𝑡𝑖𝑖2� + 𝜶𝜶𝑏𝑏𝑖𝑖𝑏𝑏𝑗𝑗 (31) 

𝑹𝑹𝑏𝑏𝑖𝑖𝑤𝑤𝒗𝒗𝑏𝑏𝑗𝑗
𝑤𝑤 = 𝑹𝑹𝑏𝑏𝑖𝑖𝑤𝑤(𝒗𝒗𝑏𝑏𝑖𝑖

𝑤𝑤 − 𝒈𝒈𝑤𝑤𝛥𝛥𝑡𝑡𝑖𝑖) + 𝜷𝜷𝑏𝑏𝑖𝑖𝑏𝑏𝑗𝑗 (32) 

𝒒𝒒𝑏𝑏𝑖𝑖𝑤𝑤⨂𝒒𝒒𝑤𝑤𝑏𝑏𝑗𝑗 = 𝜸𝜸𝑏𝑏𝑖𝑖𝑏𝑏𝑗𝑗  (33) 

The symbols in the above equations are represented as follows: 

𝜶𝜶𝑏𝑏𝑖𝑖𝑏𝑏𝑗𝑗 = � 𝑹𝑹𝑏𝑏𝑖𝑖𝑏𝑏𝑡𝑡�𝒂𝒂�𝑡𝑡
𝑏𝑏 − 𝒃𝒃𝑎𝑎𝑡𝑡 − 𝒏𝒏𝑎𝑎�

𝑡𝑡∈[𝑖𝑖,𝑗𝑗]
𝑑𝑑𝑡𝑡2 (34) 

𝜷𝜷𝑏𝑏𝑖𝑖𝑏𝑏𝑗𝑗 = � 𝑹𝑹𝑏𝑏𝑖𝑖𝑏𝑏𝑡𝑡�𝒂𝒂�𝑡𝑡
𝑏𝑏 − 𝒃𝒃𝑎𝑎𝑡𝑡 − 𝒏𝒏𝑎𝑎�

𝑡𝑡∈[𝑖𝑖,𝑗𝑗]
𝑑𝑑𝑑𝑑 (35) 

𝜸𝜸𝑏𝑏𝑖𝑖𝑏𝑏𝑗𝑗 = �
1
2
𝛀𝛀�𝝎𝝎�𝑡𝑡𝑏𝑏 − 𝒃𝒃𝜔𝜔𝑡𝑡 − 𝒏𝒏𝜔𝜔�𝜸𝜸𝑏𝑏𝑖𝑖𝑏𝑏𝑡𝑡

𝑡𝑡∈[𝑖𝑖,𝑗𝑗]
𝑑𝑑𝑑𝑑 (36) 

For 𝛀𝛀(𝝎𝝎) in the Equation (36), the definition in this paper is as follows: 

𝛀𝛀(𝝎𝝎) = �−[𝝎𝝎]∧ 𝝎𝝎
−𝝎𝝎𝑻𝑻 𝟎𝟎

� (37) 
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[𝝎𝝎]∧ = �
0 −𝜔𝜔𝑧𝑧 𝜔𝜔𝑦𝑦
𝜔𝜔𝑧𝑧 0 −𝜔𝜔𝑥𝑥
−𝜔𝜔𝑦𝑦 𝜔𝜔𝑥𝑥 0

� (38) 

where 𝜔𝜔𝑥𝑥, 𝜔𝜔𝑦𝑦, and 𝜔𝜔𝑧𝑧 are the components of 𝝎𝝎 on the corresponding coordinate axes, respectively. 

4.2. Camera-IMU extrinsic parameters solving 
After obtaining the camera intrinsics and IMU intrinsics through separate calibrations, the joint calibration 

is performed using the measurements from both sensors to determine their extrinsic parameters. The extrinsic 
parameters of the camera and IMU refer to the transformation matrix between the camera coordinate system 
and the IMU coordinate system. The external parameter calibration of the camera and the IMU is very 
important for the VSLAM system. Even if there is only a 1–2 deviation between the final camera coordinate 
system and the IMU coordinate system, the positioning accuracy of the VSLAM system will be significantly 
affected. Therefore, it is necessary to perform calibration of the external parameters of the camera and IMU. 
The coordinate relationship between the camera and the IMU is shown in Figure 8. 

b1

c1

p1p2
3D landmarks

Feature 
Points

IMU Coordinate 
System

Camera Coordinate 
System

c2

b2

c3
b3

IMU Pre-integration
IMU 

Measurements

qbc, pbc

 
Figure 8. Schematic diagram of coordinate relationship between the camera and the IMU. 

According to the IMU pre-integration model in Section 3.1, the IMU rotation matrix 𝑹𝑹𝑏𝑏𝑘𝑘𝑏𝑏𝑘𝑘+1 from time 
k + 1 to time k is obtained, and the camera frame at any moment satisfies the following equation: 

𝑹𝑹𝑏𝑏𝑘𝑘𝑏𝑏𝑘𝑘+1𝑹𝑹𝑏𝑏𝑏𝑏 = 𝑹𝑹𝑏𝑏𝑏𝑏𝑹𝑹𝑐𝑐𝑘𝑘𝑐𝑐𝑘𝑘+1 (39) 

where 𝑹𝑹𝑏𝑏𝑏𝑏 is the rotation matrix transformed from the camera coordinate system to the IMU coordinate system; 
𝑹𝑹𝑐𝑐𝑘𝑘𝑐𝑐𝑘𝑘+1 is the camera rotation matrix from time k + 1 to time k. Equation (39) can be written in the form of 
quaternions as follows: 

𝒒𝒒𝑏𝑏𝑘𝑘𝑏𝑏𝑘𝑘+1⨂𝒒𝒒𝑏𝑏𝑏𝑏 = 𝒒𝒒𝑏𝑏𝑏𝑏⨂𝒒𝒒𝑐𝑐𝑘𝑘𝑐𝑐𝑘𝑘+1 (40) 

According to the properties of quaternion operations, Equation (40) can be transformed into the form of 
quaternion left multiplication matrix and right multiplication matrix, as shown below. 

��𝒒𝒒𝑏𝑏𝑘𝑘𝑏𝑏𝑘𝑘+1�𝐿𝐿 − �𝒒𝒒𝑐𝑐𝑘𝑘𝑐𝑐𝑘𝑘+1�𝑅𝑅� 𝒒𝒒𝑏𝑏𝑐𝑐 = 𝑸𝑸𝑘𝑘+1
𝑘𝑘 𝒒𝒒𝑏𝑏𝑏𝑏 = 0 (41) 
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where �𝒒𝒒𝑏𝑏𝑘𝑘𝑏𝑏𝑘𝑘+1�𝐿𝐿  and �𝒒𝒒𝑐𝑐𝑘𝑘𝑐𝑐𝑘𝑘+1�𝑅𝑅  are the left multiplication matrix and right multiplication matrix of 

quaternion respectively. For N pairs of measurements, the following system of equation can be constructed: 

⎣
⎢
⎢
⎡ 𝑤𝑤10𝑸𝑸10

𝑤𝑤21𝑸𝑸2
1

⋮
𝑤𝑤𝑁𝑁𝑁𝑁−1𝑸𝑸𝑁𝑁

𝑁𝑁−1⎦
⎥
⎥
⎤
𝒒𝒒𝑏𝑏𝑏𝑏 = 0 (42) 

where 𝑤𝑤𝑘𝑘+1𝑘𝑘  is the Huber robust kernel function, which is used to represent the weight of removing outliers, 
expressed as follows: 

𝑤𝑤𝑘𝑘+1𝑘𝑘 = �
1, 𝑟𝑟𝑘𝑘+1𝑘𝑘 < 𝑟𝑟𝑡𝑡ℎ𝑟𝑟
𝑟𝑟𝑡𝑡ℎ𝑟𝑟
𝑟𝑟𝑘𝑘+1𝑘𝑘 , others  (43) 

where 𝑟𝑟𝑡𝑡ℎ𝑟𝑟 is the angle residual threshold of the rotation matrix, which is set to 5° in this paper; 𝑟𝑟𝑘𝑘+1𝑘𝑘  is the 
angle residual of the rotation matrix, defined as follows: 

𝑟𝑟𝑘𝑘+1𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
𝑡𝑡𝑡𝑡�𝑹𝑹�𝑏𝑏𝑏𝑏−1𝑹𝑹𝑏𝑏𝑘𝑘𝑏𝑏𝑘𝑘+1

−1 𝑹𝑹�𝑏𝑏𝑏𝑏𝑹𝑹𝑐𝑐𝑘𝑘𝑐𝑐𝑘𝑘+1� − 1
2 � (44) 

So far, the extrinsic parameter 𝒒𝒒𝑏𝑏𝑏𝑏 of the camera and IMU can be obtained by SVD decomposition of 
Equation (44). 

5. Experiments 
In this paper, a notebook computer MateBook D is used as the carrier, and its computer configuration is 

shown in Table 1. The experimental operating environment utilizes the Robot Operating System (ROS)—
Kinetic[3] version on the Ubuntu 16.04 system. The proposed camera-IMU calibration method is implemented 
through C++ programming[1]. 

Table 1. Test computer equipment parameters. 

Configuration type Configuration information 

CPU i5-1135G7 processor 

CPU graphics card Intel integrated graphics 

Processor base frequency 2.4 GHz 

Running memory 16 GB 

The MYNT EYE Camera D1010-50 integrates both the camera and IMU, as illustrated in Figure 9. In 
this paper, only the left-eye camera and IMU sensor of the MYNT EYE camera are utilized. The definition of 
the camera sensor and IMU coordinate systems can be found in Figure 10. 

The coordinate systems of the camera and IMU are defined as follows: 

1) Camera: The x-axis corresponds to the right-right direction of the camera, the y-axis corresponds to 
the direction directly behind the camera, and the z-axis corresponds to the direction directly above the camera. 
This coordinate system follows the right-handed convention. 
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2) The x-axis corresponds to the direction directly to the right of the camera, the y-axis corresponds to 
the direction directly in front of the camera, and the z-axis corresponds to the direction directly below the 
camera. This coordinate system also follows the right-handed convention. 

IMU
Right Eye Camera

Left Eye Camera

  
Figure 9. Schematic diagram of the pinhole camera model. Figure 10. Schematic diagram of similar triangles. 

The performance parameter information of MYNT EYE Camera D1010-50 is shown in Table 2. 

Table 2. Performance Parameters of MYNT EYE Camera D1010-50. 

Configuration type Configuration information 

Camera frame rate 10 Hz 

Resolution 1280 × 720 

Focal length 3.9 mm 

IMU frequency 200 Hz 

Output data format YUYV/MJPG 

Output accuracy ≤2.5% 

5.1. Experiment of camera intrinsic parameter calibration 
In this paper, Aprilgrid calibration boards are utilized for calibrating the internal parameters of the camera. 

The calibration board consists of a grid of Apriltags with a size of 6 × 6. Each Apriltag has a tagSize of 0.021 
m, and there is a tagSpacing of 0.0063 m between adjacent Apriltags. During the calibration process, the 
camera is kept stationary while the calibration board is continuously moved and rotated in various poses. The 
camera captures images of the calibration board from different angles and orientations, as illustrated in Figure 
11. 

 
Figure 11. Aprilgrid calibration boards. 

The internal parameter matrix K and distortion correction parameter matrix Ud of the Xiaomi camera are 
calculated by the method proposed in this paper, as follows: 

𝑲𝑲 = �
𝑓𝑓𝑥𝑥 0 𝑐𝑐𝑥𝑥
0 𝑓𝑓𝑦𝑦 𝑐𝑐𝑦𝑦
0 0 1

� = �
1091.635505127837 0 615.7646844724167

0 1094.097509334247 336.08607722962415
0 0 1

� (45) 
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𝑼𝑼𝒅𝒅 = �𝑘𝑘1 𝑘𝑘2
𝑝𝑝1 𝑝𝑝2

� = � 0.0158121998824731 −0.04906947859369595
−0.007932332725861788 −0.0036593828274275953� (46) 

After the camera is calibrated, it is necessary to verify the obtained parameter matrix, and its polar angle 
and azimuth angle errors are shown in Figure 12. 

 
Figure 12. Error diagram of polar angle and azimuth angle. 

The reprojection error of the camera intrinsics is shown in Figure 13. It can be seen from the figure that 
under this calibration internal reference, the maximum reprojection error does not exceed 0.5 pixels, which is 
within the allowable range of 1 pixel, so this calibration is valid and it is used as the internal reference of the 
MYNT EYE Camera D1010-50. 

 

 

(1) Reprojected residuals diagram. (2) Camera movement diagram. 
Figure 13. Camera reprojection error diagrams. 

5.2. Experiment of IMU intrinsic parameter calibration 
In this paper, the MYNT camera was left still and recorded data packets for 120 min, in which the data 

volume of the recorded accelerometer and angular velocity meter on the xyz axis was 1,358,672. The calculated 
IMU internal parameters are shown in Table 3. 

The average value of gyroscope noise, random walk, accelerometer noise, and random walk can be 
calculated from the above table, as shown in Table 4. 
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Table 3. IMU random error calibration results. 

Category Axis Values 

Gyro noise (unit: rad/s) x 1.7150288432418979 × 10−3 

y 2.2810285332151279 × 10−3 

z 1.4803156902749898 × 10−3 

Accelerometer noise (unit: m/s2) x 2.0263473443483032 × 10−3 

y 1.9452407902823307 × 10−2 

z 2.0800966656033096 × 10−2 

Gyro random walk (unit: rad/s) x 3.0555539333903460 × 10−5 

y 4.6905078690435216 × 10−5 

z 9.4998484143845586 × 10−6 

Accelerometer random walk 
(unit: m/s2) 

x 3.3002849804958574 × 10−4 

y 3.5835234450158800 × 10−4 

z 3.3851545364446103 × 10−4 

Table 4. The average value of IMU calibration results. 

Category Parameters Values 

Gyro (unit: rad/s) Gyro Noise 1.8254576889106717 × 10−3 

Gyro Random Walk 2.8986822146241081 × 10−5 

Accelerometer (unit: m/s2) Accelerometer Noise 2.0172282667446476 × 10−2 

Accelerometer random walk 3.4229876539854489 × 10−4 

The Allan variance method, introduced by David Allan of the National Bureau of Standards in the 1960s, 
is a time domain analysis technique[16–18]. It offers a convenient way to comprehensively characterize and 
identify various sources of error and their contributions to the overall statistical properties of noise. In this 
paper, the gyroscope and accelerometer Allan variances obtained during the IMU calibration process are 
depicted in Figures 14 and 15, respectively. 

  

Figure 14. Diagram of Allan Variance for gyroscope. Figure 15. Diagram of Allan Variance for accelerator. 
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For the calibration of IMU deterministic errors, the process employed in this paper involves several 
steps: (1) placing the IMU on a table and allowing it to remain stationary for 50 sec; (2) moving and rotating 
the IMU in the air; (3) placing the IMU back on the desktop for 1 sec. This sequence is repeated 
approximately 50 times to complete the calibration process. Figure 16 illustrates the recorded acceleration 
values and corresponding time intervals along the x, y, and z axes during the calibration procedure. 

 
Figure 16. IMU xyz three-axis acceleration and time interval diagram. 

The computed parameters associated with the deterministic errors of the IMU are presented in Table 5. 

Table 5. IMU deterministic error calibration results. 

Category Parameters Values 

Accelerometer bias x-axix 14.1412 

y-axix 7.51009 

z-axix 4.37088 

Gyroscope bias x-axix 14.1412 

y-axix 7.51009 

z-axix 4.37088 

Accelerometer scale matrix 
𝑺𝑺𝑎𝑎𝑎𝑎𝑎𝑎 = �

0.636032 0 0
0 0.592957 0
0 0 0 0.666332

� 

Accelerometer offset coefficient matrix 
𝑴𝑴𝑎𝑎𝑎𝑎𝑎𝑎 = �

1 −0.744004 −0.3843
0 1 −0.297786
0 0 1

� 

Gyroscope scale matrix 
𝑺𝑺𝑎𝑎𝑎𝑎𝑎𝑎 = �

0.636032 0 0
0 0.592957 0
0 0 0 0.666332

� 

Gyroscope offset coefficient matrix 
𝑴𝑴𝑎𝑎𝑎𝑎𝑎𝑎 = �

1 −0.744004 −0.3843
0 1 −0.297786
0 0 1

� 
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5.3. Experiment of camera-IMU extrinsic parameter calibration 
To validate the proposed calibration method for camera and IMU extrinsic parameters, this paper 

conducted an experiment by fixing the Aprilgrid calibration board. The MYNT camera recorded data packets 
of the calibration board’s movement, rotation, and “8” pattern through ROS, resulting in a total of 1858 image 
data collected for this experiment. The acceleration error and angular velocity error during the calibration 
process are illustrated in Figure 17 and Figure 18, respectively. The red dashed line represents the acceptable 
range of error. 

 
Figuer 17. Acceleration error graph. 

 
Figure 18. Angular velocity error graph. 
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From the figures, it is evident that the acceleration error and angular velocity error remain within the 
acceptable range. Furthermore, the estimated accelerometer biases and gyroscope biases are presented in 
Figure 19 and Figure 20, respectively. 

 
Figure 19. Accelerometer bias estimation graph. 

 
Figure 20. Gyroscope bias estimation graph. 

In our study, we used the MYNT camera, which is a low-cost sensor priced at only $15. This choice of 
sensor is based on its affordability, but it also comes with lower precision in its IMU. It is important to note 
that while there are a few instances where the estimated values of the accelerometer and gyroscope bias exceed 
the predefined boundary, overall, these values converge and fall within a reasonable range. In addition, Figure 
21 and Figure 22 present a comparison between the predicted and measured values of specific force and 
angular velocity, while Figure 23 illustrates the reprojection error of the camera. 
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Figure 21. Comparison graph of predicted and measured specific force. 

 
Figure 22. Comparison graph of predicted and measured angular velocity. 

 
Figure 23. Camera reprojection error diagram. 
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The figures demonstrate a close agreement between the predicted and measured values of specific force 
and angular velocity, indicating good consistency. Additionally, the camera reprojection error remains within 
the acceptable range of 1 pixel. Consequently, the calibrated extrinsic parameters are deemed accurate, and the 
proposed methods in this paper are considered reliable. The rotation matrix, 𝑹𝑹𝑏𝑏𝑏𝑏, and the translation matrix, 
𝒕𝒕𝑏𝑏𝑏𝑏, from the calibrated camera coordinate system to the IMU coordinate system are as follows. 

𝑹𝑹𝑏𝑏𝑏𝑏 = �
0.99976023688788251 0.012861567340825 −0.0177214227256832
0.0137597595321047 −0.998576606647093 −0.0515308613822358
−0.017033430526573 0.0517623486978128 −0.99851415688601164

� (47) 

𝒕𝒕𝑏𝑏𝑏𝑏 = [0.05715507571041868 0.254279370393975 0.01424385318401530]T (48) 

6. Conclusion 
In this paper, we presented a fast and accurate camera-IMU calibration method based on space coordinate 

transformation constraints and SVD (Singular Value Decomposition) tricks. First, we constructed constraint 
equations based on the equality of rotation and transformation matrices between camera frames and IMU 
coordinates at different moments. Secondly, we solved the external parameters of the camera-IMU using 
quaternion transformation and SVD techniques. The experimental results demonstrated the performance of our 
proposed camera-IMU calibration method. In the future, we will consider the characteristics of VSLAM 
systems to further model the measurement and noise of camera and IMU sensors. 
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