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Abstract: It is well known that integral inequalities play a very important role in studying the properties of solutions to

ordinary differential equations and integral equations. In 1919, Gronwall established a class of basic integral

inequalities when he studied the dependence of differential equations on parameters, which is called Gronwall's

inequalities. Gronwall's inequality play a very important role in ordinary differential equations, and it is also an

important tool to study the properties of differential equations and integral equation solutions. There are several proofs

of Gronwall's inequality, in particular, Agarwal, Deng and Zhang studied the Gronwall-Bellman inequality with

multiple nonlinear terms, which made the adaptability of the Gronwall-Bellman inequality widely. Gronwall's

inequality has various generalization forms and different proving methods, which is also a good tool for solving many

mathematical problems. Different kinds of Gronwall's inequalities and their proofs are discussed in this paper. By

researching the induction of Gronwall's inequality forms and their proofs, this paper aims to solve the problems of

inequality as much as possible.
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1. The Inequality of Gronwall

1.1 The form of inequality of Gronwall
Theorem 1.1Set )(tf and )(tg be continuous non-real-valued functions on interval

],[  , K is non-negative constant, as for ],[ t , we obtain[1]:
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When ],[ t , we obtain:
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2. The inequality of Gronwall with parameters

2.1 The form of inequality of Gronwall with parameters

Theorem 2.1Set )(ta and )(tu be real-valued and continuous functions greater than or

equal to zero on interval ],[ 10 tt , assumption to ],[ t , we obtain[2]:
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C is non-negative constant 1 , when ],[ 10 ttt , we get:

  
t

t
dssaCtu

0

1
1

1 ])()1([)(   (2)

Theorem 2.2Set )(ta and )(tu be real-valued and continuous functions greater than or

equal to zero on interval ],[ 10 tt , )(tu is monotonic non-decreasing, as for ],[ 10 ttt ,we

obtain[3,4]:
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C is non-negative constant 10  , when ],[ 10 ttt , we finally obtain:
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2.2 The proof of the form of inequality of Gronwall with parameters 

The proof of theorem 2.1:

Consider function dssusaty
t

t
)()()(

0
  for variable substitution, derivative with

respect to t , we obtain:
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Both ends of the equation (1) are  th power at the same time, and then multiply by 0)( t ,
put it in (3), we can get:
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Consider the integration factor of first order ordinary differential equation
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Both ends of the above formula multiply by the integration factor at the same time, we can
get:
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And integrate both sides of this equation from 0t to t , we obtain:



Volume 4 Issue 2 - 60 -





 t

t
dssaCtyC

0

)(
1

)]([
-1
1 1

1






When 1 , )()( tyCtu  , we know that 
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When 1 , )()( tyCtu  , we know that 
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3. The maximum term exists in the nonlinear Gronwall integral inequality

3.1 The form of the maximum term exists in the nonlinear Gronwall

integral inequality
The maximum term exists in the linear Gronwall integral inequality was discussed by

Hristova and Stefanova in 2010.
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And the maximum term exists in the nonlinear Gronwall integral inequality was
discussed by Hristova in 2012, we consider ktk )( first, then
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We assume that:

（ 1H ） Nonnegative continuously differentiable and monotonically nondecreasing function

)(ta in ],[ 0 Tt , and tta )( ;

（ 2H ） Non-negative continuous function ),(1 stp and ),(2 stp in    TtTt ,, 00  ,

non-negative continuous increasing function ),(3 stp and ),(4 stp in    TtTt ),(, 00  ;

（ 3H ） Non-negative continuous function )(t is defined in ],[ 00 thtt  , and kt  )( ;

（ 4H ） Non-negative continuous increasing function )(tg is defined in R ; and

,0 0  Tt h is non-negative.

Theorem 3.1 If（ 1H ）-（ 4H ） is established at the same time, )),,)(([ 0  RThtCu  also

established, and satisfy the inequality (7) and (8), then for any  ,, 10 ttt we get an estimator

of the unknown function in inequality (7)[5,6]：
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1G is the inverse of G： ;4,3,2,1  ),(max),(
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3.2 The proof of the maximum term exists in the nonlinear Gronwall

integral inequality

The proof of theorem 3.1: For any non-negative   ),(),,(),(,,
~~

0 stpstpstpTtt iii  and
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monotonic non-decreasing function with respect to t，we obtain (7) as:
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Any  ,,02 Ttt  to  20 ,ttt , the following inequality holds:
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We denote   ,,)(: 20  Rthtz  and
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)(tz is monotonically non-decreasing and satisfies u t ≤ z t on  20 ,)( tht  .

We know that:
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As for  ,, 20 ttt we obtain:
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Take the derivative of (11):
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From equations (10) and (12), we can get:
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Integrate from tt 0 against (13) ends, and apply the exchange decree ),(s  we can

get:
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Since 1-G is an increasing function, we finally obtain:
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can be

obtained from ，)()( tztu 

From the arbitrariness of 2t , set ，tt 2 get (9), the proof is completed.
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