
- 45 -Insight - Information

Security Issues in Smart Contracts
Kunfei Lu
School of Information Engineering, Guangdong Eco-engineering Polytechnic, Guangzhou 510520,
China.

Abstract: Smart contracts often deal with transferring considerable amount of assets. Therefore, it is also crucial to pay

attention on the security in order to prevent attacks about stealing and tampering the assets. This paper will study security

issues in Ethereum about some universal security vulnerabilities in smart contracts.

Keywords：Smart Contracts; Ethereum; Security; Vulnerabilities

1. Introduction
Blockchain is a technology emerged from distributed data storage, peer-to-peer transmission, consensus mechanism and

encryption algorithm[6]. There are many typical applications of blockchain technology, e.g., cryptocurrencies (like Bitcoin),

financial products, digital authentication etc. Smart contact implementation is a hot topic in the area of blockchain today [3].

A smart contract is crucial and needs to be secured. In Ethereum, it is necessary to ensure the correct execution of smart

contracts, otherwise, the adversary would tamper the execution and cause damages, e.g. steal the participant’s assets by

unauthorized diverting. In fact, with the static analyzing of all smart contracts on the Ethereum blockchain, some security

vulnerabilities have been discovered, and have been exploited by real-world attacks, which cause a considerable property loss
[4].

This article analyzes the paradigmatic security vulnerabilities in Ethereum smart contracts first, then provides real attack

patterns which exploit these vulnerabilities.

2. Vulnerabilities in smart contracts
The causes of security vulnerabilities in smart contracts are different, some comes from Solidity, some due to EVM

bytecode or blockchain. This section introduces one type of vulnerability in each level.

2.1 Calling to invalid address
In Solidity, there is fallback function, also calls the unnamed method of the Solidity contract. It will be implicitly

implemented when the transaction handler cannot find the matched method calls [2].

Some of the code which is used to call the function and transfer ether would bring side effects to recipient via invoking

the fallback function.

There is an example that function call, used to invoking functions and transfer ether to recipient. The code can be written

e.g.

a.call.value(1 ether)(bytes4(keccak256("go(uint256)")), n); 

This code means one can invoke the function go of contract a. This function is identified by first 4 bytes of it hashing

signature (keccak256), 1 ether means the amount of value need be transferred to contract a, and n is the actual parameter of

go. There is a feature that the fallback function of a will be executed if a function which has given signature does not exist at

address a.

Volume 4 Issue 2 - 46 -

Fallback function is a default function that can be called by a contract to respond to data that does not match any

function in the lookup table, which allows contracts to respond to receipt of funds and/or unexpected data. Receiving funds is

commonly handled with a Solidity construct called a fallback function. The specific attack exploiting this vulnerability shows

in Section 3.1.

2.2 Immutable bugs

This is a vulnerability on blockchain. Smart contracts cannot be modified when they have been published on blockchain
[5]. The reason is related to the consensus protocol. Blockchain can be regarded as a distributed database relying on a specific

algorithm to maintain the same ledger between untrustworthy parties. It consists of a chain structure with a timestamp. Each

block in the chain carries the entire transaction record (regardless of the light node and the fragmentation technique). The

smart contracts have been run as a program on all the nodes of network, they are unable to replace or modify it. Unless all of

these nodes are synchronized, however, this cannot be achieved by contract publishers alone. Consequently, programmers

should consider about the expected bugs of contracts and anticipate ways to terminate the contract.

This problem can also regard as an immutability feature of a blockchain itself because of the impossible updating when

a smart contract bytecode has been deployed into the network. Nothing has been changed without uploading a new version of

contract again.
Several attacks exploit the immutability of the bugs to steal ether, and the loss in these attacks are impossible to restore.

The specific attack exploiting this bug shows in Section 3.2.

2.3 Limitation of Timestamp
In Ethereum, the permission about some critical operations of contracts at current state may dependent on time

constraints, and the time constraints are determined by the setting of timestamp. A part of the block validation algorithm is

checking whether the timestamp is greater than previous blocks and less than that setting time into the future. A good

example is when mining a block, miner should set the timestamp of block. Miner can set the timestamp as same as local

system. He can also set vary value for tolerance to∼900 seconds and still have some other miners can be able to accept this

block. Miners check if the timestamp greater than the previous block and check if it less than into 900 seconds compare with

their local system [5]. Therefore, the adversary who creates a new block can choose a block which has suitable timestamp and

benefit to his mining. The specific attack exploiting this bug shows in Section 3.3.

3. Relevant attacks
This section demonstrates the attacks in real world which exploit the vulnerabilities presented in Section 2.

3.1 The DAO attack
The DAO is a contract to implement a crowdfunding platform, which raises more than $150 million in world's largest

crowdfunding before June 18th, 2016. On June 18th, a hack attacked the DAO by draining more than 3.6m ether into a

“childDAO” then caused the price of ether decrease sharply.

SimpleDAO allows participants to donate ether to contract and can withdraw the funds, which contains the

vulnerabilities and allow two versions of attack that exploit the vulnerabilities of call function.

The DAO attack has two versions. These two attacks are able to happened since DAO contract sends the amount of ether

before reducing balance. They all exploit the vulnerabilities of “calling to invalid address”. But now the DAO attack can be

recovered by a hard-fork of the blockchain. The recovery contract has been returned ether of DAO token holder. A security

review of the contracts is currently under way.

For the first one, deploying Mallory passing DAO’s address when creating SimpleDAO. Then donate some ether to

Mallory and waiting others’ donating to increase the DAO balance. These operations cause to invoke Mallory’s fallback by

- 47 -Insight - Information

invoking the withdraw methods, which empty the DAO via transferring the ether to Mallory. That is the side effect of

function call, maliciously calling back withdraw to invoke the fallback of Mallory repeatedly. Adversary can exploit these

operations to attack the DAO and obtain all the balance of DAO. The attacker can delay the out-of-gas exception by

providing more gas in the originating transaction, because the call at line 12 does not specify a gas limit.

For the second one, the previous steps are as same as the first attack but it only need two calls to invoking fallback

function. Firstly, function call invoke fallback and interrupt withdraw before the credit updated. Then providing 1wei to

invoke Mallory2’s fallback again in order to make Mallory2 DAO balance to underflow. Since at first time the balance is to

zero, then the second is become (256 -1) wei.

In the end, attacker use function getJackpot to empty the DAO.

3.2 Rubixi
Rubixi [6] is a smart contact that implement a Ponzi Scheme which aim to made participants profit from investments

made by new subscribers attracted by promised high-rewards. This is a dynamic pyramid mechanism that initially attracts

people by high revenue and paying them out, then turns to fraudulent execution. The owner of DynamicPyramid contract also

has authority to collect some fees paid by subscribers after their association for investment.

“DynamicPyramid” was the previous name of the contracts. While it has been updated to Rubixi after first deploy, but

the programmer forgot to rename the contract’s constructor. This constructor can be used to reset the address of contracts’

owner, it follows that anyone can become the temporary owner after invoking the DynamicPyramid function, then can call

function collect all fees to withdraw fees.
The adversary exploits the feature about the immutability of EVM and classified as “immutable bugs”. In order words, it

can also regard as an immutability feature of a blockchain itself because of the impossible updating when a smart contract

bytecode has been deployed into the network.

3.3 Govern Mental
This attack is another an array-based Ponzi scheme with a quirk, which exploiting the vulnerability about “limitation of

timestamp” of blockchain [1]. The rule for get back money is that the last participant can win a jackpot if no one invests after

him for 12 hours with enough users keep investing. When 12 hours expires, the array about the list of users is cleared.

However, clear GovernMental's list of participants has taken a long time since the array must scan each element of it.

Moreover, the amount of gas required to clear the array is greater than the maximum allowed for a single transaction.

Therefore, the contract breaks off by the failed attempt to clear the list and the winner of the legal jackpot cannot claim her

price.

The Governmental contract encourages other participants to play in rounds so that the jackpot increases. It only returns

back to the single winner who is the last for at least one minute. The players should invest at least half of jackpot which the

value keeps increasing for each new investment. Everyone can call function reset investment, which can pay half value of

jackpot to winner and transfer the last ether to the contract owner.
There is an attack exploits the vulnerability of " limitation of timestamp " for this game. Assume that the attacker, who is

also a miner in this game, tries to join. The attacker can use the block timestamp to become the last player in a minute by

setting up the timestamp of the new block so that the timestamp of the current block is displayed greater than at least one

minute. Attacker can choose the block with a suitable timestamp for her. If an attacker tries to publish a new block using a

delayed timestamp, she will be the last player and win the jackpot.

4. Conclusion
This paper analyzed the security issues of smart contract and presented some the known attack illustrating with

corresponding pattern. It is reasonably foreseeable that the attacks patterns will evolve with more new security vulnerabilities

are found.

Volume 4 Issue 2 - 48 -

References

[1] Bartoletti, M., Salvatore C., Tiziana C., and Roberto S.: Dissecting Ponzi schemes on Ethereum: identification, analysis,

and impact (2017), https://arxiv.org/abs/1703.03779.

[2] Bhargavan, K., Swamy, N., Zanella-Béguelin, S., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G., Kobeissi,

N., Kulatova, N., Rastogi, A. and Sibut-Pinote, T. (2016). Formal Verification of Smart Contracts. Proceedings of the 2016

ACM Workshop on Programming Languages and Analysis for Security - PLAS'16.

[3] Clack, C.D., Bakshi, V.A., Braine, L.: Smart contract templates: foundations, design landscape and research directions.

CoRR abs/1608.00771 (2017)

[4] Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts   smarter. In: ACM CCS (2016),

http://eprint.iacr.org/2016/633

[5] Marino, B., Juels, A.: Setting standards for altering and undoing smart contracts. In: RuleML. pp. 151–166 (2016)

[6] Swan, M.: Blockchain: Blueprint for a New Economy. O'Reilly Media, United States of America (2015).

https://arxiv.org/abs/1703.03779

