Natural carbon fibres—An overview
Abstract
The purpose of this review is to introduce the properties of carbon fibre, describe its application and present an ecological way of obtaining this product. This paper describes the formation of carbon fibres from various precursors. Currently, the most widely used pre-cursor is polyacrylonitrile. This is due to the fact that the obtained fibre has very good strength parameters. In opposition to the non-organic source, a renewable material is presented, which is lignin. This review highlights the advantages of using this ecological precursor and presents the general properties of the obtained carbon fibre.References
Li H, Yang Y, Wen Y, Liu L. A mechanism study on preparation of rayon based carbon fibres with (NH4)2SO4/NH4Cl/organosilicon composite catalyst system. Composites Science and Technology 2007; 67(13): 2675–2682. doi: 10.1016/j.compscitech.2007.03.008
Peijs T, Kirschbaum R, Lemstra PJ. Chapter 5: A critical review of carbon fibre and related products from an industrial perspective. Advanced Industrial and Engineering Polymer Research 2022; 5(2): 90–106. doi: 10.1016/j.aiepr.2022.03.008
Minus M, Kumar S. The processing, properties, and structure of carbon fibres. JOM 2005; 57: 52–58. doi: 10.1007/s11837-005-0217-8
Kaur J, Millington K, Smith S. Producing high-quality precursor polymer and fibres to achieve theoretical strength in carbon fibres: A review. Journal of Applied Polymer Science 2016; 133(38). doi: 10.1002/app.43963
Boczkowska A, Kapuściński J, Puciłowski K. Wojciechowski in Composites (Polish). Oficyna Wydawnicza Politechniki Warszawskiej; 2000.
Fejdyś M, Łandwijt M. Technical fibres reinforcing the composite material (Polish). Techniczne Wyroby Włókiennicze 2010; 18(1/2): 12–22.
Huang X. Fabrication and properties of carbon fibres. Materials 2009; 2(4): 2369–2403. doi: 10.3390/ma2042369
Zoltek Toray Group. How is carbon fibre made. Available online: https://zoltek.com/carbon-fibre/how-is-carbon-fibre-made/ (accessed on 5 July 2023).
Souto F, Calado V, Pereira Junior N. Carbon fibre from lignin: A literature review (Portuguese). Matéria (Rio de Janeiro) 2015; 20(1): 100–114. doi: 10.1590/S1517-707620150001.0012
Dobrzański LA. Fundamentals of Materials Science and Metallurgy (Polish). Wydawnictwa Naukowo-Techniczne Publishing; 2006.
Frank E, Steudle LM, Ingildeev D, et al. Carbon fibres: Precursor systems, processing, structure, and properties. Angewandte Chemie International Edition 2014; 53(21): 5262–5298. doi: 10.1002/anie.201306129
Liu J, Bengtsson J, Yu S, et al. Variation in the hierarchical structure of lignin-blended cellulose precursor fibres. International Journal of Biological Macromolecules 2023; 225: 1555–1561. doi: 10.1016/j.ijbiomac.2022.11.211
Wang S, Bai J, Wang Q, et al. Lignin-based carbon fibres: Formation, modification and potential applications. Green Energy & Environment2022; 7(4): 578–605. doi: 10.1016/j.gee.2021.04.006
Xu Y, Liu Y, Chen S, Ni Y. Current overview of carbon fibre: Toward green sustainable raw materials. BioResources 2020; 7234–7259. doi: 10.15376/biores.15.3.Xu
Vinod A, Pulikkalparambil H, Jagadeesh P, et al. Recent advancements in lignocellulose biomass-based carbon fibre: synthesis, properties, and applications. Heliyo 2023; 9: e13614. doi: 10.1016/j.heliyon.2023.e13614
Matsakas L, Raghavendran V, Yakimenko O, et al. Lignin-first biomass fractionation using a hybrid organosolv—Steam explosion pretreatment technology improves the saccharification and fermentability of spruce biomass. Bioresource Technology 2019; 273: 521–528. doi: 10.1016/j.biortech.2018.11.055
Wen JL, Xue BL, Sun SL Sun RC. Quantitative structural characterization and thermal properties of birch lignins after auto-catalyzed organosolv pretreatment and enzymatic hydrolysis. Journal of Chemical Technology & Biotechnology 2013; 88(9): 1663–1671. doi: 10.1002/jctb.4017
Bengtsson A, Hecht P, Sommertune J, et al. Carbon fibres from lignin—Cellulose precursors: Effect of carbonization conditions. ACS Sustainable Chemistry & Engineering 2020; 8(17): 6826–6833. doi: 10.1021/acssuschemeng.0c01734
Novaes E, Kirst M, Chiang V, et al. Lignin and biomass: A negative correlation for wood formation and lignin content in trees. Plant Physiology 2010; 154(2): 555–561. doi: 10.1104/pp.110.161281
Huang Y, Liu H, Xiao C, et al. Robust preparation and multiple pore structure design of poly (tetrafluoroethylene-co-hexafluoropropylene) hollow fibre membrane by melt spinning and post-treatment. Journal of the Taiwan Institute of Chemical Engineers 2019; 97: 441–449. doi: 10.1016/j.jtice.2019.02.010
Jin J, Ogale AA. Carbon fibres derived from wet-spinning of equi-component lignin/polyacrylonitrile blends. Journal of Applied Polymer Science 2017; 135(8): 45903. doi: 10.1002/app.45903
Jia G, Yu Y, Hu Z, et al. Lignin-based carbon fibres: Insight into structural evolution from lignin pretreatment, fibre forming, to pre-oxidation and carbonization. International Journal of Biological Macromolecules 2023; 226: 646–659. doi: 10.1016/j.ijbiomac.2022.12.053
Wang S, Zhou Z, Xiang H, et al. Reinforcement of lignin-based carbon fibres with functionalized carbon nanotubes. Composites Science and Technology 2016; 128: 116–122. doi: 10.1016/j.compscitech.2016.03.018
Paunonen S, Kamppuri T, Katajainen L, et al. Environmental impact of cellulose carbamate fibres from chemically recycled cotton. Journal of Cleaner Production 2019; 222: 871–881. doi: 10.1016/j.jclepro.2019.03.063
Woigk W, Nagel Y, Gantenbein S, et al. Flax-based natural composites hierarchically reinforced by cast or printed carbon fibres. Composites Science and Technology 2022; 226: 109527. doi: 10.1016/j.compscitech.2022.109527
Attia AAM, Antonious MS, Shouman MAH, et al. Processing and fundamental characterization of carbon fibres and cellulose nanocrystals derived from bagasse. Carbon Letters 2019; 29: 145–154. doi: 10.1007/s42823-019-00034-y
Liu HC, Susnjar A, Ho J, et al. Carbon fibre reinforced polymers for implantable medical devices. Biomaterials 2021; 271: 120719. doi: 10.1016/j.biomaterials.2021.120719
Olofin IO, Liu R. The application of carbon fibre reinforced polymer (CFRP) cables in civil engineering structures. SSRG International Journal of Civil Engineering 2015; 2(7). doi: 10.14445/23488352/IJCE-V2I7P101
Wu Y, Gao X, Wu J, et al. Green and low-cost natural lignocellulosic biomass-based carbon fibres—Processing, properties, and applications in sports equipment: A review. Polymers 2022; 14(13): 2591. doi: 10.3390/polym14132591
Aamir M, Tolouei-Rad M, Giasin K, Nosrati A. Recent advances in drilling of carbon fibre—Reinforced polymers for aerospace applications: A review. The International Journal of Advanced Manufacturing Technology 2019; 105: 2289–2308. doi: 10.1007/s00170-019-04348-z
Mayer P, Kaczmar J. Properties and applications of carbon and glass fibres (Polish). Tworzywa Sztuczne i Chemia 2008; 6: 52–56.
Suzuki T, Takahashi J. Prediction of energy intensity of carbon fibre reinforced plastics for mass-produced passenger cars. In: Proceedings of The Ninth Japan International SAMPE Symposium; 29 November–2 December 2005; Tokyo. pp. 14–19.
Aragão Almeida Júnior S, Parvin A. Reinforcement of new and existing reinforced concrete beams with fibre-reinforced polymer bars and sheets—A numerical analysis. Structures 2002; 40: 513–523. doi: 10.1016/j.istruc.2022.04.046
Kossakowski PG, Wciślik W. Fibre-reinforced polymer composites in the construction of bridges: Opportunities, problems and challenges. Fibres 2002; 10(4): 37. doi: 10.3390/fib10040037
Copyright (c) 2023 Paweł Grzegorz Kossakowski, Justyna Dygas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.