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Abstract: We consider the general Degasperis-Procesi model of shallow water out-flows, which generalizes the list of 

famous equations: KdV, Benjamin-Bona-Mahony, Camassa-Holm, and Degasperis-Procesi. Our objective is the con-

struction of self-similar solutions of this equation. Along with the standard waves (peakons and cuspons) we present a 

new type of solutions (that we call “twins”) which are a combination of solitons and cuspons. We demonstrate also the 

wave-kind dependence on the amplitude for the waves (solitons, peakons, cuspons, and twins) with positive and nega-

tive amplitudes. 
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1. Introduction

We consider a unidirectional approximation of the

shallow water system called the “general Degaspe-

ris-Procesi” (gDP) model ([1], 1999): 

Here α, 𝑐0 , …, γ are real parameters and ε charac-

terizes the dispersion. The constants α ≥ 0, and γ ≥ 0 

are associated with different characters of the dispersion 

manifestation. In the Green-Naghdi approximation the 

restriction α + γ = 1/6   is required. The equation (1) 

terms with 𝑐2 ≥ 0 and 𝑐3 ≥ 0 can be treated as repre-

sentations of nonlinear dispersion. In the Camassa-Holm 

approximation 𝑐2 + 𝑐3 > 0.

This six parametric family of third order conservation 

laws generalizes a list of famous equations. Indeed: 

1. If we set α = 𝑐2 = 𝑐3 = 0 then we obtain the fa-

mous KdV equation, whereas for γ = 𝑐2 = 𝑐3 = 0 Eq.(1)

is the well-known Benjamin-Bona- Mahony (BBM) 

equation (
[2]

, 1972)  

2. Preserving in (1) the nonlinear dispersion terms and

setting 𝑐2 = 𝑐3/2, 𝑐1 = 3𝑐3/2α2,  and γ = 0 we obtain

the Camassa-Holm (CH) equation ([3], 1993): 

3. In the case 𝑐2 = 𝑐3, 𝑐1 = 3𝑐3/2α2, and 𝑐0 = γ = 0

(1) is the Degasperis- Procesi (DP) equation (
[1]

, see al-

so
[4]

 and references therein):

The KdV and BBM equations are essentially different. 

Both of them have soliton-type traveling wave solutions, 
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however, KdV solitons collide elastically: they pass 

through each other preserving the shapes and velocities, 

whereas BBM “solitons” change after the interaction and 

an oscillatory tail is generated
[5]

. 

Next, for the first view the CH (6) and DP (7) equa-

tions are quite similar: the difference consists of the rela-

tion between the coefficients 𝑐0, 𝑐2, and 𝑐3 only. How-

ever, it should be emphasized that these equations have 

truly different properties: 

- if 𝑐0 > 0, the Camassa-Holm equation has smooth

soliton solution 

- if 𝑐0 = 0, the Camassa-Holm equation has continu-

ous but non-smooth traveling wave solutions 

𝑢(𝜂)|𝜂=(𝑥−𝑉𝑡)/ε called “peakons” if their first derivative

are bounded or “cuspons” if the first derivatives are un-

bounded (at the point 𝜂0 = 0).

- the Degasperis-Procesi equation, under the condition

𝑢 → 0 as 𝑥 → ∞, doesn’t admit smooth traveling wave 

solutions. 

The cited particular cases of the equation (1) 

have been studied intensively (see e.g.
[5-16] 

and references 

therein). As for the general family (1), the first systematic 

results have been obtained recently in the papers [17, 18], 

dedicated, on the whole, to smooth soliton type solutions. 

The main objective of the present paper is the construc-

tion of non-smooth traveling wave solution of (1). Next, 

completing
[18]

, we describe the set of possible traveling 

wave solutions of (1) which vanish at infinity. 

Similarly to CH and DP equations, it is natural to 

suppose the existence of peakons and cuspons for the 

general DP equation (1) also. Indeed, we prove that this 

is true, but under some conditions. Next, it turns out that 

some non-integrable versions of (1) admit a new kind of 

solutions which are of the soliton type but they have a 

non-bounded first derivative at points ±𝜂0 ≠ 0.

We call  this  soliton-cuspon  combination 

“twins” (see  below Figure 1 and Figure 2). 

To justify continuous functions as well-defined solu-

tions of gDP equation we transform (1) into the follow-

ing divergent form: 

and note that all terms here are well defined not for 

smooth functions only,  

but for distributions such that (𝑢(𝜂)′
𝜂

)2 ∈ 𝔇′(ℝ1)

also. Note that the Degasperis-Procesi equation with 

𝑐2 = 𝑐3 has more singular solutions, however we will

not consider here this well studied case, see e.g.
[1,6,11-16]

.  

Concerning the solution construction, we use an ap-

proach based on the algebraic point of view. Indeed, 

non-classical traveling waves  𝑢 = 𝑢(𝑥 − 𝑉𝑡)  of (1) 

should be distributions such that (𝑢(𝜂)′
𝜂

)2 ∈ 𝔇′(ℝ1), in

other words 𝑢(𝜂)  and 𝑢(𝜂)′
𝜂
 should belong to a sub-

algebra in 𝔇′(ℝ1). In fact, there exist only three subal-

gebras in 𝔇′(ℝ1) . The first one has the generators

*1, 𝐻(𝜂)+, where 1 denotes the space of smooth func-

tions and 𝐻(𝜂) is the Heaviside function: 𝐻(𝜂) = 0 for

𝜂 < 0, and 𝐻(𝜂) = 1 for 𝜂 > 0. The Heaviside function

is associated with the sequence

where 𝜂+ = 𝜂𝐻(𝜂); 𝛿(𝜂) and 𝛿′(𝜂), . . . are the Dirac

delta-function and its derivatives. This subalgebra allows 

us to construct peakon-type solutions. 

The second subalgebra has the generators {1, 𝜂+
𝜆 } , 

where 𝜆 ∈ (0,1) (see e.g. [19]). Respectively, the dis-

tribution 𝜂+
𝜆  is associated with the sequence  

and allows us to construct both cuspon-type and twins 

solutions.  

To obtain the third subalgebra we should treat ε as 

a small parameter and associate distributions with as-

ymptotic series with respect to ε with coefficients from 

𝔇′(ℝ1). In the framework of such interpretation, solitons,

in the leading term with respect to ε, are associated with 

the so-called “function”: (εδ(𝜂), ψ(𝜂)) = εψ(0). Since 

powers of solitons are associated with εδ-function again, 

*1, εδ(𝜂)+ forms the subalgebra. This treatment of soli-

tons had allowed us to describe the motion of perturbed 



Insight - Physics Volume 2 Issue 1 | 2019 | 3

solitons
[20,21] 

and, not so long ago, collision of solitons 

for essentially non-integrable equations
[22-25]

. 

In what follows we assume that 

and treat ε ≠ 0 as a fixed parameter.

The paper contents is the following: In Section 2 we 

present the construction of peakons and obtain sufficient 

conditions of their existence. The cuspon and twins cases 

are considered in Sections 3 and 4. Section 5 is devoted 

to waves with negative amplitudes. In Conclusion we 

describe the set of possible traveling wave solutions of 

Eq. (1). 

2. Peakons

To construct a peakon solitary wave let us define the

notation 

for arbitrary functions 𝑓±(𝜂). Next we write the an-

satz 

Here 𝜔± = 𝜔±(𝜂) are functions such that:

 the amplitude A > 0 is a free parameter, and the 

velocity V = V(A) should be determined. To simplify 

formulas we define the scale  

β = √𝑐1(𝑐2 + 𝑐3) /𝑐3

Obviously, (11) implies that ,𝜔-|0 = 0, however, to

obtain a peakon we should suppose 

where prime denotes the derivative with respect to 𝜂. 

We assume also that the functions 𝜔± are extended on

ℝ∓
1  in a smooth manner.

Note now that 𝐻2 = 𝐻, thus

Furthermore, 

Substituting (14), (15), and similar relation for 𝑢𝑥
2

into (5), we obtain a linear combination of H(𝜂) , 

1 − H(𝜂), δ(𝜂), and δ′(𝜂) functions. Now, in order to 

simplify formulas, we rescale the functions 𝜔±

and define the notation 

Then the result of substitution of (10) into (5) can be 

easily transformed to the following form:  

where 

Recall that the distributions H, δ, and δ′ 
are linearly

independent. Thus by virtue of (11) and (18) we deduce 

that: 

Clearly, for peakons we conclude that: 

Consequently, (18) implies now the problems 
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It is important to note that when α > 0, then the 

equality p = 1 defines the velocity 

Thus, all coefficients in (22) are uniquely defined in 

this case. On the contrary, if α = 0, we should fix the 

amplitude A = γ/𝑐3 . Respectively, the coefficient

q = q(V) remains indeterminated. 

Furthermore, to analyze the equation (22) let us 

change the variable 

We take into account the property of being even, 

g(−𝜂) = 𝑔(𝜂). Then we eliminate the first derivatives 

from the model equations (22) and pass to the boundary 

problem 

Now we integrate (26), use the second condition in (27), 

and obtain the Cauchy problem for the first order ODE.  

Here 

Let us note that 

Thus, for 𝑔±(0) = 0  the derivative ω′
±(0)

is bounded if and only if C(q) = 0. 

This implies the condition 

Therefore 

Integrating we obtain the basic peakon solution: 

Let us focus on the condition of the existence of 

peakons. 

1. Suppose α > 0 . In accordance with (24) we

define V = V(A) and conclude from (33) that

if 𝑐3 > α2r𝑐1, then A = 𝐴
∗

, where

Consequently, if 𝛾𝛼 > 0, then the peakon exists with

uniquely defined V and A > 0. At the same time, if 

𝛾𝛼 = 0, that is for 𝛾 = 0 and 𝑐0 = 0, the peakon can’t

have positive amplitude.  Conversely,  

then the peakon can be of arbitrary amplitude. Finally, 

if 𝑐3 ≤ α2r𝑐1 and 𝛾𝛼 > 0, then peakons with positive

amplitudes don’t exist. 

2. Suppose α = 0. In accordance with (24) and (33)

we conclude that the peakon exists with uniquely defined 

V and A > 0:

3. Cuspons

To construct a cuspon-type traveling wave we will

use the ansatz (10), (11), (16), (25) again. However, ac-

cording to (7) and contrary to (12) we assume 

where g(η) ∈  𝐶∞(𝑅1), and the degree r is defined

in (17). In view of (5) we suppose 
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Repeating the construction from Sec.2 we pass to 

the equation (28) again. However, for solutions with un-

bounded derivative at zero we should assume now that 

𝐶(𝑞) < 0 . Thus, we obtain the conditions of a 

cuspon-wave existence: 

Again, there are different possibilities: 

1. Suppose α > 0 . Then the velocity V  is

defined by (24). Next, 

Consequently, if 𝛾𝛼 > 0, then there exists the family of

cuspons with amplitudes A under the restriction (43). If 

𝛾𝛼 = 0, the cuspon can be of arbitrary positive amplitude.

Conversely, cuspons don’t exist if 

2. Suppose α = 0. Then, instead of (38) we obtain

 This means that we can define initial data for (5) like 

cuspons with fixed amplitude but with different rates of 

decrease due different values of q > r in (28). Respec-

tively, the traveling wave will propagate with the veloci-

ty 

4. Twins

Let us use the ansatz formally like (10), (11), (16),

(25) again, but contrary to (12), (13), and (40) we sup-

pose

 If C > 0, that is q < r, then g(η) ∈ (0,1), and the 

associated solution is the classical soliton [17, 18]. 

However, for C < 0 the range of g can include negative 

values, therefore the solution can be singular at a point 

η0 > 0 where 𝑔(η0) = 0. Let us consider this case un-

der the condition q > r. 

Assume first that for some i, k ∈ Z+

Then r =
2i+1

2k+1
> 1/2 so that 𝑔𝑟  is well defined

over ℝ1 and (−g)𝑟 = −g𝑟.

Turn next to the case in which the range of g(η)𝑟 in-

cludes negative values. We come back to the equation 

(28) and consider the right-hand side F(g,q). It is easy to

calculate the first derivative

Thus the left critical point g0 = (1 − 𝑞)1/𝑟 is nega-

tive for 𝑞 > 1. Furthermore, 

Obviously, 𝐹(g0, 𝑞) < 0  when q > 2 , whereas

F(0, 𝑞) > 0. Moreover,

F′′𝑞𝑞 > 0. Thus, the condition

guaranties the existence of a point g∗ < 0 such that

 Now let us consider the Cauchy problem consisting 

of the equation (28) and the initial data 

In view of the property 𝑔+ → 1  as η → ∞  and

(52), we obtain the existence of the required point 

η0 > 0 as well as the existence of the even extension of

𝑔+(η) on ℝ−
1 , which is smooth near the point η = 0.

Now we define  

and justify the satisfiability of (47) for q > 2. It re-

mains to note that equation (32) yields  

Remark 1. The equalities  1 − g
∗
r = p(A, V)  and
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(17) determine the relations between A , V , q , and

g
∗

 . Indeed, let α > 0. Then (16), (17), and (53) imply

This  implies  the  equation  F( g∗ , q. g∗ , A/ =

0,  which  is  resolvable  for q > 2. Respectively,

we obtain the one-parametric family of twins under the 

condition (50), that is for A > 0:

If α = 0, then we treat q > 2 as a free parameter, 

solve the equation F( g
∗

, q) = 0  and obtain the

one-parametric family of twins again. Now the shape of 

each twins depends on the q-value, and it propagates 

with the individual velocity and amplitude 

 Remark 2. Notice the difference between cuspons 

and twins. Indeed, cuspons are associated with the ”even 

combination” of the distributions  η
±
r : locally 

u ≈ Ap−1(1 − c( η+
r +  η−

r )) , where c =  (−C)
r/2

and C < 0. At the same time, twins  are  associated

with  the  “odd combination”  of  the  distribu-

tions  of the type  η
±
r :  locally  u|

η>0
≈ Ap−1(1 −

c( (η − η
0

)
+

r
−  (η − η

0
)

−

r
)

Example (J. Noyola Rodriguez) 

Let 

Then r = 3/5 and 𝑐3 > 2α2𝑐1. Under the choice

we solve the equation (51) and define the required 

root 𝑔∗ = −0.652493832 . Respectively, we find the

wave amplitude A = 1.35366126  Now we apply the 

Runge-Kutta method for the problem (28), (52) and ob-

tain the twins depicted in Figure 1 and Figure 2. 
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5. Waves with negative ampli-

tudes 

Contrary to the KdV equation, the model (1) admits 

self-similar solutions with negative amplitudes. Let us 

establish the conditions for their existence. 

Peakons.  By virtue of the equalities p = 1 and (16), 

the assumption A < 0 requirers α > 0. Next we define 

the velocity in the form of (24) and pass to the equation 

q = r. Obviously, its solution  A = A∗ < 0 exists if and

only if 

Cuspons. We assume α > 0. Next, the inequality q>r 

implies now: 

where A∗ < 0 is defined in (36).

Solitons. The model (1) admits soliton-type solutions 

under the conditions [17, 18]: 

When A < 0, the first one implies the assumption 

α > 0 again. Next, proceeding in a similar way as we 

did in Section 4, we obtain the equalities (54). Thus, the 

inequality q > 0  is verified automatically for A < 0 , 

whereas q < 𝑟 implies the following: 

Obviously, Eq.(63) can be realized under the condi-

tion (59) only. Taking into account that 𝑔∗ → 0  as

q → 𝑟, we obtain the existence condition for solitons 

Twins. For A < 0, the second equality in (56) implies 

the same assumption α > 0. Thus the existence condi-

tion yields now: 

6. Conclusion

Let us summarize all the results of the previous sec-

tions and [18] to demonstrate the existence of one or the 

other type of traveling waves in dependence on the wave 

amplitude. We fix a set of structural constants α, 𝑐0, . . . ,

𝑐3, γ, and very the amplitude A ∈  ℝ1 . There are sever-

al distinct possibilities. 

1. Let α > 0  and γ
α

> 0 . Then there appears a

sufficiently complicated system of restrictions which is 

depicted in Figure 3- Figure 5 for solitons, peakons and 

cuspons. 

 As for twins, the formulas (55) and (65) imply the 

conclusion: 

where a∗ = γ
α
(1 −  g

∗
𝑟)/(𝑐3 − 2α2𝑐1). Note that
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a∗ > A∗ in the cases (66) and (68). So, twins belong

to the cuspons zone always. 

2. Let α > 0 and γ
α

= 0. Then for all A ≠ 0 the

traveling waves are: 

3. Let α = 0. Then the waves are:

solitons with the amplitudes 

peakon with the amplitude A∗  and the velocity

V = 𝑐0 + 𝑟𝑐1 γ/𝑐3,

cuspons with the amplitude A∗  and the velocities

V > 𝑐0 + 𝑟𝑐1 γ/𝑐3,

twins with the amplitudes  A > 0 and the velocities 

V defined in (56).

For A < 0  and α = 0 traveling waves don’t exist. 
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Remark 3. For solitons with positive amplitudes the 

condition q > 0 implies formally the inequality 

However,  g
∗

→ 1  when q → 0,  so  that  we

change  (74)  to  the  restriction A > 0. 

Remark 4. For the standard Camassa-Holm equation 

(2) α2rc1 = c3. There- fore, if c0 > 0, then γ
α

> 0
and we have the situation depicted in the Figure 4. If 

c0 = 0, then γ
α

= 0 and we have the case (70). The

same is true for the Degasperis- Procesi equation. Note 

also that the CH and DP equations don’t admit 

twins-type solutions. 

Remark 5. Recall that we consider Eq.(1) under the 

assumptions (8) and presuppose that waves vanish at 

infinity. If limx→±∞u ≠ 0 , then the space of traveling

wave solutions is much more rich, see e.g.
[9,10,16]

. 
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