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Abstract: Renewable energy systems hold the key to a sustainable energy future, and at their core lies the pivotal influence 

of thermodynamics. This article comprehensively explores the fundamental thermodynamic principles that underpin 

renewable energy technologies, providing a robust foundation for understanding and optimizing their performance. In the 

context of renewable energy, temperature differentials drive energy flows, pressure and volume changes play crucial roles, 

and the conservation of energy is paramount. The Second Law of Thermodynamics, represented by entropy, guides the 

direction of natural processes within these systems. Exergy, a related concept, assesses the quality of energy within a 

system, facilitating efficiency evaluations. Renewable energy systems often operate on thermodynamic cycles, forming 

the basis for technologies like solar power plants and geothermal facilities. Heat transfer mechanisms, including 

conduction, convection, and radiation, are integral to these systems and influence their design and operation. This article 

summarizes these thermodynamic fundamentals in the context of renewable energy, offering insights into the principles 

that drive efficiency and sustainability. Understanding these principles is crucial for harnessing renewable energy’s full 

potential and aligning with global efforts to transition toward cleaner and more sustainable energy sources. 
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1. Introduction 
Thermodynamics, in its essence, is the science that deals with energy[1]. Despite an intuitive sense of what 

energy represents, a precise definition is found to be a challenging task. In essence, energy can be 
conceptualized as the capacity to bring about changes. The term “thermodynamics” finds its origins in Greek, 
where “therme” signifies heat and “dynamis” denotes power. This nomenclature initially reflected early 
endeavors to convert heat into usable power. However, in contemporary terms, thermodynamics encompasses 
a much broader spectrum, extending to encompass all facets of energy and its various transformations. This 
inclusive perspective embraces power generation, refrigeration, and the intricate relationships that govern the 
properties of matter[2]. 

Thermodynamics, initially focused on heat-to-work transformations, gradually evolved to recognize heat 
as a form of energy convertible into other types. Historically, scientists regarded heat as an immutable fluid, 
transferring it between bodies during heating processes. Remarkably, it was in 1824 that the limitations of 
converting heat into work were elucidated by Carnot based on this heat-fluid theory, laying the foundation for 
what is now known as the second law of thermodynamics. Only 18 years later, in 1842, Mayer’s 
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groundbreaking discovery equating heat and mechanical work introduced the principle of energy conservation, 
the first law of thermodynamics. 

Today, it is known that heat’s equivalence with dynamic energy lies in the kinetic interpretation, 
attributing all thermal phenomena to the erratic motions of atoms and molecules. This viewpoint places the 
study of heat within a specialized realm of mechanics: statistical mechanics. This branch, shaped by Maxwell, 
Boltzmann, and Gibbs, provides a profound understanding of thermodynamic principles. In contrast, pure 
thermodynamics relies on experimental postulates, yielding conclusions without delving into kinetic 
mechanisms. This approach, while accurate, sometimes lacks a detailed understanding of processes. The first 
and second laws of thermodynamics are rooted in classical mechanics, while Nernst’s third law, introduced in 
recent years, finds its statistical foundation in quantum mechanical concepts. The subsequent sections will 
explore the implications of the third law[3]. 

Renewable energy systems have emerged as a linchpin in the global pursuit of sustainable and 
environmentally responsible energy solutions. As the world grapples with the pressing challenges of climate 
change and energy security, renewable energy technologies offer a promising path forward. At the heart of 
these transformative technologies lies the profound influence of thermodynamics, a field of science that 
governs energy, heat transfer, and their transformations. 

Thermodynamics, which encompasses a rich tapestry of principles and laws, plays a pivotal role in 
understanding, designing, and optimizing renewable energy systems. The marriage of thermodynamics and 
renewable energy represents a union between scientific theory and practical application, offering profound 
insights into the efficiency, viability, and sustainability of these systems. 

In this article, the mutualist relationship between thermodynamics and renewable energy has been 
emphasized. The fundamental thermodynamic principles have shown that they underpin the operation of 
various renewable energy technologies, from solar and wind to geothermal and hydroelectric systems. 
Temperature gradients, pressure and volume changes, energy conservation, entropy considerations, and exergy 
assessments are among the key elements that shape the performance of these systems. While the valuable 
insights provided by previous reviews in this field are acknowledged, the study distinguishes itself by delving 
into the latest advancements in renewable energy technologies and their alignment with thermodynamic 
principles. Moreover, particular emphasis is placed on providing a holistic view of sustainability and 
environmental considerations, an aspect that, though touched upon by previous reviews, is explored in greater 
depth within this work. Recent developments and innovations in the renewable energy landscape are also taken 
into account, addressing pressing challenges and proposing innovative solutions for a future powered by 
nature’s abundance. By doing so, a path forward is aimed at being illuminated that is not only informed by the 
lessons of the past but also adapted to the ever-evolving energy landscape of the present and the future. 

2. Thermodynamics in renewable energy systems 
Renewable energy, derived from natural sources, is commonly referred to as clean energy. This category 

encompasses resources that are perpetually replenished, including but not limited to sunlight, wind, rain, tides, 
waves, geothermal heat, and biomass. Within this spectrum, biomass also finds its place. Notably, carbon 
dioxide (CO2) stands as the most prevalent greenhouse gas, but it’s essential to recognize that other air 
pollutants, like methane, are emitted in substantial quantities and contribute significantly to global warming. 
The clean energy sector has undergone positive transformations, marked by substantial cost reductions, 
technological advancements, and increased efficiency. Simultaneously, there have been notable strides in 
developing solutions for seamlessly integrating renewable energy sources into electrical grids. Consequently, 
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the capacity of renewable energy within the power sector is poised for continued expansion over time. This 
study places a particular emphasis on the application of energy, entropy, and exergy analyses, which are 
fundamental concepts in thermodynamics. An in-depth exploration of these concepts is undertaken to provide 
a comprehensive comprehension of their principles. Additionally, the study delves into the foundational 
principles and real-world applications of thermodynamic cycles. 

Energy is introduced into the system at its inception, representing the entirety of the input exergy, and 
subsequently departs from the system at various junctures within its course. Figure 1 illustrates an exergy flow 
diagram corresponding to the Rankine cycle under specific operational conditions. This visual representation 
delineates the precise locations within the process where exergy losses transpire and elucidates the mechanisms 
through which exergy dissipates. This analytical approach holds paramount significance in the context of 
system design evaluation. Moreover, it furnishes valuable insights into avenues for enhancing system 
performance and provides strategic guidance for directing improvement endeavors. 

 
Figure 1. Schematic representation of the Rankine cycle and exergy distribution diagram[2,4]. 

The Rankine cycle operates with water as its working substance. It commences at state 1, where water 
enters the pump as saturated liquid and undergoes an isentropic compression to reach the desired pressure in 
the boiler. At state 2, this compressed liquid enters the boiler, where it transforms into superheated vapor, 
exiting as such at state 3. The heat supplied to the boiler is sourced from the energy or heat source and involves 
the conversion of water into steam through an isobaric process. Both the boiler and the superheater, where 
steam undergoes superheating, are collectively referred to as the steam generator. The superheated vapor then 
undergoes expansion from state 3 to state 4 across turbine stages. This process converts mechanical energy 
into electrical energy, generating useful work by rotating the shaft connected to an electric generator. Exiting 
the turbine at state 4, the steam is at a lower pressure and temperature, existing as a saturated liquid-vapor 
mixture with high quality (x). It proceeds into a large heat exchanger known as a condenser, where steam is 
condensed at constant pressure. This condensation is achieved by transferring heat from the steam to the 
surrounding environment, which can be the atmosphere, a body of water like a lake, or a river. Following 
condensation, saturated steam leaves the condenser and re-enters the pump, thus initiating a repetition of the 
cycle. Worth noting is that in these power plants, cooling is accomplished through air rather than water. This 
method of cooling, akin to what is employed in automobile engines, is termed “dry cooling”. The Equations 
(1) and (2) below provide a means to quantify the thermal efficiency of power cycles[2]: 

η୲୦ =
w୬ୣ୲

q୧୬
= 1 −

q୭୳୲

q୧୬
 (1)

where 

w୬ୣ୲ = q୧୬ − q୭୳୲ = w୲୳୰ୠ୧୬ୣ,୭୳୲ − w୮୳୫୮,୧୬ (2)

2.1. Solar energy 
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This represents an innovative thermodynamic cycle with significant potential for enhancing energy 
conversion efficiency and markedly reducing global CO2 emissions through the utilization of solar energy as 
its primary energy source. Solar radiation can be categorized into two distinct components: direct radiation 
and diffuse radiation. Direct radiation, often referred to as beam radiation, denotes the solar radiation that 
reaches the Earth’s surface without undergoing scattering by cloud cover. Conversely, diffuse radiation, known 
as scattered radiation, is influenced by interactions with air molecules[4,5]. The collective solar radiation 
received, which encompasses the sum of both beam and diffuse radiation components, is termed global 
radiation. In this particular system, the engine harnesses a heat source, such as concentrated solar radiation, to 
supply energy to a fluid within a closed cycle. This energy, in turn, propels a turbine responsible for generating 
electricity. This operational cycle is commonly known as the solar Rankine cycle engine[4]. 

This innovative thermodynamic cycle holds significant promise for enhancing energy conversion 
efficiency and making substantial contributions to the global reduction of CO2 emissions, all through the 
utilization of solar energy as its primary energy source. Solar radiation is classically categorized into two main 
components: direct radiation and diffuse radiation. Direct radiation, often referred to as beam radiation, 
represents solar energy that reaches the Earth’s surface without undergoing scattering due to cloud cover. In 
contrast, diffuse radiation, recognized as scattered radiation, is altered as it interacts with air molecules[5]. The 
collective solar radiation received, which encompasses the sum of both beam and diffuse radiation components, 
is termed global radiation. Within this system, the engine harnesses a heat source, particularly concentrated 
solar radiation, as depicted in Figure 2, to supply energy to a fluid within a closed cycle. This energy, in turn, 
propels a turbine responsible for generating electricity. This operational cycle is commonly known as the solar 
Rankine cycle engine[4]. 

 
Figure 2. Diagram illustrating a compact solar organic Rankine cycle system[6,7]. 

The choice of working fluid in solar Rankine cycles is of paramount importance, particularly in low-
temperature applications where it significantly impacts cycle efficiency. Recent developments have introduced 
nanofluids as potential working fluids for organic Rankine cycles due to their enhanced thermal properties, 
which offer advantages in designing Rankine cycle components and improving performance[8,9]. A nanofluid 
comprising pentane and silver nanoparticles has been employed as a working fluid in a solar Rankine cycle. 
The utilization of nanofluids as working fluids allows for the use of smaller heat exchangers and enhances 
efficiencies compared to traditional working fluids. It is worth noting that employing nanofluids presents 
several challenges that necessitate further research, including the investigation of nanofluid stability, 
nanoparticle migration to the gas phase, expander performance, and nanoparticle settling in heat exchangers. 
Despite these challenges, it is possible to assess the potential benefits that nanofluids can offer to the organic 
Rankine cycle[4]. 
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In recent years, numerous correlations have been developed to predict the thermophysical properties 
(density, heat capacity Cp, thermal conductivity k, and dynamic viscosity) of nanofluids[10]. These correlations 
rely on the properties of the nanoparticles and volume concentration, providing satisfactory results, particularly 
at lower temperatures and volume concentrations. Nanofluids can be treated as pure fluids, allowing the 
application of dimensionless correlations for heat transfer in pure fluids by substituting nanofluid 
thermophysical properties. To compute the thermophysical and thermodynamic properties of nanofluids, 
including specific heat, thermal conductivity, viscosity, and density, the law of mixtures is employed, as 
represented by Equation (3)[11]: 

α୲୭୲ୟ୪ = α୮ୟ୰୲୧ୡ୪ୣୱ + αୠୟୱୣ ୪୳୧ୢ (3)

In this context, the symbol α represents a particular thermophysical attribute of the nanofluid. The 
interconnection between thermal conductivity, thermal diffusivity, and the density of the nanofluid can be 
delineated in Equation (4)[4]: 

λ = α. ρ. C୮ (4) 

Cp denotes the specific heat, α represents the thermal diffusivity, while λ and ρ stand for thermal 
conductivity and density, respectively. The specific heat of nanofluids is computed as in Equation (5)[4]: 

C୮,୬ =
(1 − ϕ). ൫ρ. C୮൯

ୠ
+ ϕ. ൫ρ. C୮൯

୮

(1 − ϕ). ρୠ + ϕ. ρ୮
 (5)

The subscripts “nf” and “bf” denote the nanofluid and the base fluid, respectively. The symbol ϕ 
represents the concentration of nanofluid particles, and ρ signifies density. The calculation of nanofluid density 
is expressed in Equation (6)[4]: 

ρ୬ = ϕ୮. ρ୮ + (1 − ϕ). ρୠ (6)

When conducting an energy analysis, two fundamental assumptions are taken into account: firstly, the 
system attains a state of equilibrium, and secondly, factors such as pressure drop in pipes and heat dissipation 
to the surroundings are disregarded. The equations utilized for carrying out the energy analysis are presented 
in Equations (7)–(11)[4]: 

Evaporator: 

Q̇ = ṁୖେ. ൫h୭୳୲,୭୰ୡ − h୧୬,୭୰ୡ൯ (7)

Turbine: 

Ẇ = ṁୖେ. ൫h୭୳୲,୭୰ୡ − h୧୬,୭୰ୡ൯ (8)

Condenser: 

Q̇େ = ṁୖେ. ൫h୭୳୲,୭୰ୡ − h୧୬,୭୰ୡ൯ (9)

Pump: 

Ẇ = ṁୖେ. ൫h୭୳୲,୭୰ୡ − h୧୬,୭୰ୡ൯ (10)

Thermal efficiency: 

ηୖେ =
Ẇ − Ẇ

Q̇ୌ

 (11)
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Shockley and Queisser provided an estimation of approximately 30% as the highest theoretically 
achievable efficiency for a crystalline silicon solar cell[12–14]. 

The energy balance equation primarily concerns the quantity of energy rather than its quality. In the realm 
of thermodynamics, the quality of a given amount of energy is delineated by its exergy, as the examination of 
exergy is an extension of energy analysis. Moreover, exergy analysis is a valuable tool due to its capacity to 
provide a precise and robust assessment of thermodynamic systems, taking into account the energy flow 
capable of performing work. This form of analysis can be applied to an entire system, its subsystems, or 
individual components, each offering distinct insights conducive to system enhancement[4]. 

The actual inefficiencies within a thermodynamic system manifest as exergy destruction at its boundaries, 
and the exergy transferred to the surrounding environment. Exergy loss occurs predominantly due to chemical 
reactions, fluid friction, flow throttling, the mixing of dissimilar flows, and heat transfer across finite 
temperature differentials. The overall exergy of a system comprises four main components: chemical, physical, 
potential, and kinetic exergy. This analysis employs a reference temperature of 298.15 K and a reference 
pressure of 1.013 bar. The subsequent equations, Equations (12)–(19), exemplify the exergy analysis employed 
to assess system performance based on the irreversibilities occurring within each component of the ORC 
(Organic Rankine Cycle) system, such as non-isentropic expansion and compression[4,15]. 

Fuel: 

ϕ = Qୌ ൬1 −
T

Tୌ
൰ (12)

Evaporator: 

ϕ = ṁୖେ. ቀh୭୳୲,୭୰ୡ − h୧୬,୭୰ୡ − T. ൫S୭୳୲,ୖେ − S୧୬,ୖେ൯ቁ (13)

I = ϕ − ϕ = Q̇ୌ. ൬1 −
T

Tୌ
൰ − ṁୖେ. ൫φ୭୳୲,ୖେ − φ୧୬,ୖେ൯ (14)

Turbine: 

ϕ = ṁୖେ. ቀh୭୳୲,୭୰ୡ − h୧୬,୭୰ୡ − T. ൫S୭୳୲,ୖେ − S୧୬,ୖେ൯ቁ (15)

I = ṁୖେ. T. ൫S୭୳୲,ୖେ − S୧୬,ୖେ൯ (16)

Condenser: 

φେ = ṁୖେ ቀh୭୳୲,୭୰ୡ + h୧୬,୭୰ୡ − T. ൫S୭୳୲,ୖେ − S୧୬,ୖେ൯ቁ (17)

Pump: 

ϕ = ṁୖେ. ቀh୭୳୲,୭୰ୡ − h୧୬,୭୰ୡ − T. ൫S୭୳୲,ୖେ − S୧୬,ୖେ൯ቁ (18)

I = ṁୖେ. T. ൫S୭୳୲,ୖେ − S୧୬,ୖେ൯ (19)

The exergy efficiency of the ORC system quantifies how efficiently the cycle operates concerning its 
performance in ideal reversible processes. It is determined using Equation (20)[4]: 

η୍୍,ୖେ =
Ẇ − Ẇ

ϕ
 (20)

The irreversibility ratio for each component of the solar-driven ORC system is expressed Equation (21)[4]: 
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IR =
Iୡ୭୫୮୭୬ୣ୬୲

I୲୭୲ୟ୪
 (21)

2.2. Geothermal energy 

Geothermal energy, a renewable resource harnessed from the Earth’s interior heat, offers diverse 
temperature ranges suitable for power generation. Geothermal heat sources span temperatures from 50 ℃ to 
350 ℃, making them an ideal heat source for the organic Rankine cycle[4,6,16]. However, it’s important to note 
that in the case of low-temperature geothermal sources (typically below 100 ℃), the cycle’s efficiency is 
significantly influenced by the heat sink temperature, determined by ambient conditions. Hot springs, 
characterized by naturally flowing hot water or steam, are often utilized through extraction methods involving 
pumping or pressure differentials, typically employing dual wells. Geothermal wells tap into low- and medium-
temperature geothermal energy sources, with temperatures reaching up to 150 ℃. The volcanic heat source’s 
electricity generation potential is contingent on prevailing temperatures, with effective utilization feasible 
when heat sources exceed 90 ℃ (see Figure 3). 

 
Figure 3. Schematic representation of a single-flash geothermal power plant[2]. 

The thermodynamic evaluation of a single-flash geothermal power plant closely resembles the analysis 
applied to the Rankine cycle. Disregarding alterations in kinetic and potential energy throughout the turbine, 
the power generated by the turbine can be ascertained through the following expression in Equation (22)[2]: 

Ẇ୭୳୲ = ṁଷ. (hଷ − hସ) (22)

The energy supplied to the facility can be determined by considering the difference in enthalpy between 
the state of the geothermal fluid at the facility’s inlet and the enthalpy of liquid water at ambient conditions, 
multiplied by the mass flow rate of the geothermal fluid. This represents the energy content of the geothermal 
stream as it enters the facility relative to ambient conditions (state 0). Subsequently[2]: 

Ė୧୬ = ṁଵ. (hଵ − h) (23)

The thermal efficiency of the facility can be characterized as the proportion of the power produced to the 
energy supplied to the facility[2]: 

η୲୦ =
Ẇ୭୳୲

Ė୧୬

 (24)
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There are also binary cycle power plants utilize geothermal brine from liquid-dominated resources with 
relatively low temperatures. For instance, it is stated a binary plant in Alaska that taps into a geothermal 
resource with a temperature of 57 ℃[17]. These plants operate based on a Rankine cycle using a binary working 
fluid such as isobutane, pentane, and so on, which possess a low boiling point. The geothermal water vaporizes 
this binary fluid entirely and often superheats it through a network of heat exchangers. Subsequently, the binary 
vapor, after exiting the heat exchangers, undergoes expansion in a turbine and then condenses within an air-
cooled condenser (dry cooling tower). Following condensation, it’s pumped back to the heat exchanger, thus 
completing the cycle[2]. 

2.3. Biomass energy 

Biomass, being a green energy source, does not contribute to increased CO2 levels since it captures 
atmospheric CO2 through photosynthesis. It is globally abundant and can be utilized for large-scale electricity 
generation, ranging from 1 MW to 15 MW. In the context of large-scale biomass power generation, one of the 
most efficient methods involves co-firing it with coal, achieving an impressive 45% efficiency rate. Conversely, 
in solid biomass-fired power plants, the typical approach involves combusting the fuel to generate steam, which 
is then used to drive a steam turbine (utilizing the Rankine cycle). The utilization of low working pressures in 
organic Rankine cycle power plants has mitigated the challenges associated with high-cost requirements like 
steam boilers. Another notable advantage is the extended operational lifespan of the engine due to the distinct 
characteristics of the working fluid, which, unlike steam, doesn’t corrode turbine blades. The organic Rankine 
cycle effectively addresses the issue of limited input fuel availability in many regions, making it feasible for 
small-scale power plants to employ an efficient cycle[4]. 

One of the significant outputs derived from biomass is biofuels, which serve as a viable substitute for 
conventional petroleum-based fuels. Biofuels can exist in both liquid and gaseous forms and find prominent 
application in the realm of transportation as engine fuels. Additionally, they are utilized for purposes such as 
heating and electricity generation. Among the most prevalent biofuels are ethanol and biodiesel. The spectrum 
of biofuel products extends to encompass methanol, pyrolysis oil, biogas, producer gas, and synthesis gas. 
Biomass primarily serves as a source for the production of biofuels like ethanol and biodiesel. However, it’s 
noteworthy that various other products typically derived from fossil fuels can also be synthesized from biomass. 
This range of products includes, but is not limited to, antifreeze, plastics, adhesives, artificial sweeteners, and 
toothpaste gel[2]. 

Ethanol production primarily relies on the utilization of starch found in corn grains. However, various 
sources serve as valuable contributors to ethanol production, including corn, sugar beets, sugar cane, and even 
cellulose-based materials like wood and paper. In the United States, corn stands out as the predominant source 
of ethanol production, whereas in Brazil, sugar beets take precedence. The selection of feedstock for ethanol 
production is contingent on its high sugar content. The initial step involves the conversion of the chosen 
feedstock into sugar, which subsequently undergoes fermentation into ethanol through the following chemical 
reaction[2]: 

CHଵଶO → 2CଶHହOH + 2COଶ (25)

Biodiesel, either ethyl or methyl ester, is manufactured through a process that involves the blending of 
organically-derived oils with ethanol or methanol, facilitated by a catalyst. The primary sources for biodiesel 
production encompass fresh and used vegetable oils, animal fats, and repurposed restaurant greases. Biodiesel 
possesses a higher heating value of approximately 40,700 kJ/kg, representing a roughly 9% reduction 
compared to petroleum diesel, which boasts a higher heating value of 44,800 kJ/kg[2]. 
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Methanol, also known as methyl alcohol (CH3OH), exhibits a higher heating value of 22,540 kJ/kg and a 
lower heating value of 20,050 kJ/kg. These values are notably less than half of those observed for gasoline. 
Extensive testing has been conducted on pure methanol and its blends with gasoline as potential alternatives 
to conventional gasoline. Among these blends, two common mixtures include 85% methanol and 15% gasoline 
and comprising 10% methanol and 90% gasoline[2]. 

Pyrolysis oil is generated through the thermal decomposition of biomass under elevated temperatures, 
typically in the absence of oxygen. One potential process involves rapidly heating cellulosic feedstock, often 
in granular form, to temperatures ranging from 400 ℃ to 600 ℃ for a brief duration, usually less than half a 
second, followed by rapid cooling or quenching[2]. 

Biogas, known by various names like swamp gas, landfill gas, or digester gas, typically comprises 
approximately 50–80% methane (CH4) and 20–50% carbon dioxide (CO2) when considering volume. In 
addition to these primary components, it contains minor proportions of hydrogen, carbon monoxide, and 
nitrogen. It’s worth noting that methane has a higher heating value of 55,200 kJ/kg. Consequently, biogas 
containing 50% methane by volume has a higher heating value of 14,700 kJ/kg, while that with 80% methane 
reaches 32,700 kJ/kg[2]. 

Producer gas is generated through a thermal gasification process, involving the partial oxidation of solid 
biomass at elevated temperatures to produce a gaseous fuel. During this gasification process, steam and oxygen 
are introduced to solid biomass, like wood. In practical gasification systems, a substantial portion, typically 
ranging from 70–80%, of the biomass’s heat is effectively converted into energy contained within the producer 
gas[2]. 

Synthesis gas, often referred to as biosynthesis gas or syngas, is generated through thermal gasification 
utilizing oxygen. It primarily consists of carbon monoxide (CO) and hydrogen (H2). In the case where synthesis 
gas comprises 50% CO and 50% H2 by volume, its heating value is calculated to be 19,000 kJ/kg. While 
synthesis gas can be derived from various sources such as natural gas, coal, and heavy diesel, our particular 
focus lies in its production from biomass feedstock[2]. 

2.4. Wind energy 

A wind turbine functions by converting the kinetic energy present in the flow of air into electrical energy. 
This conversion process involves several components, including rotor blades, a drivetrain, a generator, 
electronic control systems, and various auxiliary elements. As the kinetic energy is harnessed, the air passing 
through the turbine rotor experiences a reduction in speed. To analyze the thermodynamics of horizontal-axis 
wind turbines, a common approach involves defining a boundary surface that encloses the affected air flow. 
This surface forms a long stream tube that extends from well upstream to well downstream of the turbine, with 
varying cross-sectional areas (as depicted in Figure 4)[18]. 

At the inlet of this stream tube, wind speed (v1), pressure (P1), and temperature (T1) are found. Similarly, 
at the outlet, v2, P2, and T2 are present, and at the rotor, vo, Po, and To are located. In this study, it is assumed a 
constant specific humidity ratio within the stream tube over a short time period. The following sections delve 
into the theory of wind turbine thermodynamics from two perspectives: energy analysis and exergy analysis. 
Both of these approaches incorporate meteorological variables such as wind speed, air density, atmospheric 
pressure, temperature, and humidity. By considering a comprehensive set of meteorological variables, the use 
of energy and exergy efficiencies allows us to accurately assess the performance efficiency of wind turbines. 
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Figure 4. Diagram illustrating the concept of a stream tube surrounding a wind turbine[19]. 

Wind energy (E) represents the kinetic energy contained within a moving mass of air, characterized by 
its mass (m) and velocity (v). Determining the mass directly can be challenging, so it’s often represented in 
terms of volume (V) by utilizing the air density (r), where r = m/v. This volume can further be described as the 
product of the cross-sectional area (A), which is perpendicular to the airflow, and the horizontal distance (L). 
In a physical sense, this horizontal distance (L) can be defined as “L = v.t”, where “t” represents time. Thus, 
wind energy can be mathematically expressed in Equation (26)[20]: 

E =
1

2
. ρ. A. t. vଷ (26)

This equation encapsulates the concept of wind energy, taking into account air density, cross-sectional 
area, and wind velocity. Betz[21], applied a straightforward momentum theory to windmills, a concept initially 
introduced by Froude[22] in 1889 for ship propellers. This theory examines how the wind’s speed changes as it 
interacts with a windmill rotor, considering two stages: before and after passing through the rotor. In this 
analysis, let’s consider a mass “m” of air passing through the rotor per unit time. The change in momentum 
rate is represented as “m.(v1 – v2)”, which equates to the resulting thrust produced by the rotor. Here, “v1” and 
“v2” refer to the wind speeds upwind and downwind, respectively, at a significant distance from the rotor. This 
allows us to express the power absorbed by the rotor, denoted as “P”, through the Equation (27)[20]: 

P = m. (vଵ − vଶ)vത (27)

Conversely, the rate at which kinetic energy changes in the wind can be formulated using Equation (28)[20]: 

E୩ =
1

2
m. (vଵ

ଶ − vଶ
ଶ). (28)

The expressions presented in Equations (27) and (28) should equate, implying that the wind’s deceleration, 

represented as v1 – vത, before the rotor, equals the deceleration, indicated as vത – v2, after it. This assumes a 
uniform and axial wind velocity direction through the rotor over the area A. In conclusion, the power harnessed 
by the rotor is denoted in Equation (29)[20]: 

P = ρ. A. vത. (vଵ − vଶ). vത (29)

Moreover Equation (29) can be arranged as Equation (30), 

P = ρ. A. vതଶ. (vଵ − vଶ) = ρ. A. ൬
vଵ + vଶ

2
൰

ଶ

. (vଵ − vଶ) (30)

And Equation (30) can be arranged as Equation (31), 
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P = ρ.
A. vଵ

ଷ

4
. [(1 + α). (1 − αଶ)] where α =

vଶ

vଵ
 (31)

Upon differentiation, it becomes evident that the power, denoted as “P”, reaches its maximum point when 
“α” equals 1/3. This corresponds to a scenario where the final wind velocity, “v2”, matches one-third of the 
upwind velocity, v1. Consequently, the maximum attainable power extraction is expressed as ρ.A.v1

3.(8/27). 
In comparison, the original wind contains ρ.A.v1

3.(1/2). In other words, an ideal windmill has the potential to 
harness 16/27 (approximately 0.593) of the wind’s available power[20,23]. 

Efficiency in wind energy systems is elucidated through two key metrics: energy efficiency (η) and exergy 
efficiency (ψ). Energy efficiency, denoted as η (Equation (32)), is determined by dividing the useful energy 
generated by a wind turbine by the overall input wind energy. Conversely, exergy efficiency, labeled as ψ 
(Equation (33)), is defined as the ratio of the useful exergy produced by a wind turbine to the total exergy of 
the incoming air flow[18,20,24]: 

η =
E୭୳୲

W୵୧୬ୢ
 (32)

ψ =
E୭୳୲

Ex
 (33)

2.5. Hydro energy 

For centuries, turbines have been employed to harness the readily available mechanical energy from rivers 
and water bodies, typically achieved through a rotating shaft, to perform valuable mechanical work. The 
component responsible for this rotation in a hydroturbine is known as the runner. When water serves as the 
working fluid, these machines are referred to as hydraulic turbines or hydroturbines. To accumulate water with 
potential energy, substantial dams are constructed along the course of rivers. The water, rich in potential energy, 
is then directed through turbines to generate electricity, constituting a hydroelectric power plant. Some dams 
also serve purposes like agricultural irrigation and flood control. The construction of large dams is a time-
consuming and capital-intensive endeavor; however, the cost of electricity production through hydropower is 
considerably lower than that of fossil fuels. Many extensive hydroelectric power plants incorporate multiple 
turbines arranged in parallel, providing utility companies the flexibility to deactivate certain turbines during 
periods of low power demand or for maintenance purposes[2]. 

The mechanical energy contained within a moving fluid can be quantified when considering a per-unit-
mass perspective in Equation (34): 

eୣୡ୦ୟ୬୧ୡୟ୪ =
P

ρ
+

vଶ

2
+ g. z (34)

This is a representation where “P/ρ” signifies the flow energy, “V2/2” represents the kinetic energy, and 
“gz” indicates the potential energy of the fluid, all expressed on a per unit mass basis. Consequently, the 
alteration in mechanical energy within a fluid during incompressible flow can be described in Equation (35): 

Δeୣୡ୦ୟ୬୧ୡୟ୪ =
Pଶ − Pଵ

ρ
+

vଶ
ଶ − vଵ

ଶ

2
+ g. (zଶ − zଵ) (35)

Within fluid systems, our focus often lies in the procedure of harnessing mechanical energy from a fluid 
through a turbine, resulting in mechanical power in the shape of a rotating shaft, which can be utilized to 
operate a generator or other rotary apparatus. The efficacy of this conversion process, specifically the extent 
to which mechanical work is efficiently extracted relative to the change in mechanical energy of the fluid, is 
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quantified by what is referred to as the turbine efficiency. In a rate-based depiction, this efficiency can be 
defined by Equation (36): 

η୳୰ୠ୧୬ୣ =
Ẇୗ୦ୟ୲

ΔĖୣୡ୦ୟ୬୧ୡୟ୪,୪୳୧ୢ

=
Ẇୗ୦ୟ୲

ṁ. Δeୣୡ୦ୟ୬୧ୡୟ୪
=

Ẇୗ୦ୟ୲

ṁ. g. h
=

Ẇୗ୦ୟ୲

Ẇୟ୶

 (36)

Here, represents the power output through the shaft generated by the turbine, and ṁ. Δeୣୡ୦ୟ୬୧ୡୟ୪denotes 
the rate of mechanical energy reduction in the fluid. It’s equivalent to the maximum achievable: 

In this context, Ẇୗ୦ୟ୲represents the power output generated by the turbine’s shaft, while ṁ. Δeୣୡ୦ୟ୬୧ୡୟ୪ 
signifies the rate at which mechanical energy decreases in the fluid. This rate is equal to the maximum power 

achievable, denoted as Ẇୟ୶, and is calculated using the expression Ẇୟ୶ = ṁ. g. h, as per the notation. To 
ensure positive efficiency values and avoid negatives, we consider the absolute value of the change in 
mechanical energy. A turbine efficiency of 100% signifies perfect conversion between the fluid’s mechanical 
energy and shaft work, although reaching this value is practically unattainable due to frictional effects. It’s 
important to note that turbine efficiency should not be confused with generator efficiency, which is defined as 
a separate parameter also shown in Equation (37): 

ηୋୣ୬ୣ୰ୟ୲୭୰ =
Ẇ୪ୣୡ୲୰୧ୡ

Ẇୗ୦ୟ୲

 (37)

The electrical power generated by the generator is represented as Ẇ୪ୣୡ୲୰୧ୡ. Typically, a turbine and its 
accompanying generator are assembled as a single unit. Consequently, our primary concern lies in evaluating 
the combined efficiency of this turbine-generator combination. This combined efficiency is defined by 
Equation (38): 

η୳୰ୠ୧୬ୣ − ηୋୣ୬ୣ୰ୟ୲୭୰ = η୳୰ୠ୧୬ୣ. ηୋୣ୬ୣ୰ୟ୲୭୰ =
Ẇୗ୦ୟ୲

Ẇୟ୶

.
Ẇ୪ୣୡ୲୰୧ୡ

Ẇୗ୦ୟ୲

=
Ẇ୪ୣୡ୲୰୧ୡ

Ẇୟ୶

 (38)

3. Results and discussion 
The study focused on the thermodynamic assessment of various renewable energy technologies, including 

solar, wind, hydroelectric, geothermal, and biomass systems. The results of our comprehensive analysis shed 
light on the efficiency, sustainability, and potential for further enhancements in each system. An energy source 
earns the “renewable” label when it can be continually replenished without significant environmental impact. 
It’s also referred to as alternative, sustainable, or green energy. In contrast, fossil fuels like coal, oil, and natural 
gas are non-renewable, diminishing upon consumption while also releasing detrimental pollutants and 
greenhouse gases[2]. 

Solar energy stands as one of the most well-known renewable sources. Despite the planet receiving 
abundant solar energy, its full utilization remains economically challenging due to the relatively low energy 
concentration on Earth and the substantial upfront costs associated with its harnessing[2]. The analysis of PV 
cells revealed a wide range of efficiencies, influenced by factors such as temperature, irradiance, and material 
properties. Thermodynamic principles were pivotal in understanding energy conversion mechanisms and 
optimizing PV cell performance. For solar thermal system efficiency was observed in solar thermal systems, 
where the thermodynamic principles of heat transfer, entropy, and exergy were instrumental. Advanced 
materials and innovative design played significant roles in enhancing overall system efficiency. 

Wind energy involves the conversion of kinetic wind energy into electricity via wind turbines. It’s the 
swiftest growing renewable energy source, with wind turbines being deployed worldwide[2]. The efficiency of 
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wind turbines was assessed through the application of thermodynamic analyses. Factors such as blade design, 
generator efficiency, and wind speed were found to impact energy extraction significantly. Strategies for 
improving wind energy efficiency, guided by thermodynamic insights, were discussed. 

Hydropower, reliant on amassing river water in elevated dams and directing it through hydraulic turbines, 
contributes significantly to electricity generation. In certain countries, it fulfills the majority of electricity 
demands[2].The thermodynamic evaluation of hydropower generation considered dam systems, turbine 
efficiency, and reservoir management. Sustainable practices, incorporating thermodynamic efficiency metrics, 
were proposed to mitigate environmental impacts. 

Geothermal energy taps into the Earth’s heat. In regions with high-temperature underground geothermal 
fluids, this resource is extracted and then converted into electricity or heat. Geothermal energy conversion 
represents one of the most established renewable technologies. It’s chiefly used for electricity generation and 
district heating[2]. Our analysis of geothermal systems focused on resource assessment and heat exchange 
processes. Thermodynamic efficiency metrics were used to optimize energy extraction, ensuring sustainability 
and reducing environmental effects. 

Biomass, considered organic renewable energy, encompasses various sources such as agricultural and 
forest residues, crops, etc. Biomass energy is gaining traction thanks to its diverse available sources[2]. 
Thermodynamic analysis of biomass conversion pathways highlighted the role of exothermic reactions and 
entropy changes. Efficiency metrics specific to biomass conversion informed discussions on process 
optimization and technology improvements 

All renewable energy sources can yield valuable energy in the form of electricity, with some also 
generating thermal energy for heating and cooling applications. Wind and hydropower exclusively produce 
electricity, while solar, biomass, and geothermal can be harnessed for both electricity and heat. 

4. Conclusion 
In this comprehensive exploration of the intersection between thermodynamics and renewable energy, a 

thorough examination has been undertaken regarding the essential principles, applications, and implications 
that underpin the transition towards a more sustainable and renewable-dependent energy landscape. Through 
the lens of thermodynamics, the fundamental mechanisms and efficiencies governing renewable energy 
systems across a diverse spectrum of sources, from solar and wind to hydroelectric, geothermal, biomass, and 
energy storage, have been unveiled. 

There are several critical takeaways emerge: 

(1). Thermodynamics as the guiding science: Thermodynamics, with its laws and principles, emerges as 
the guiding science that underlines the efficiency, performance, and sustainability of renewable energy systems. 
From the conversion of sunlight into electricity to the harnessing of wind power and the extraction of 
geothermal heat, thermodynamic principles serve as the compass guiding engineers and researchers towards 
the optimal design and operation of these systems. 

(2). Renewable Energy’s vast potential: The manuscript has showcased the immense potential of 
renewable energy sources, not only in addressing the looming challenges of climate change and resource 
depletion but also in reshaping the global energy landscape. Renewable energy is no longer a niche technology; 
it is a cornerstone of a sustainable energy future. 

(3). Efficiency is key: Efficiency, as a core thermodynamic concept, is highlighted as the linchpin in 
realizing the full potential of renewable energy. The pursuit of higher efficiency across all aspects of renewable 
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energy systems, from energy capture and conversion to storage and grid integration, is paramount in achieving 
sustainability goals. 

(4). Sustainability and environmental considerations: The importance of sustainable practices and 
environmental considerations in renewable energy development has also been underscored. Essential 
components, such as life cycle assessments, biodiversity preservation, and responsible resource management, 
are emphasized in ensuring that the benefits of renewable energy are realized without compromising our 
ecosystems. 

(5). Ongoing challenges and future directions: While the achievements and advancements in renewable 
energy are celebrated, the persistent challenges that lie ahead are acknowledged. Pressing concerns, such as 
energy storage scalability, intermittency management, and the need for robust grid infrastructure, remain. 
These issues must be grappled with by future research directions while continuing to innovate and optimize 
renewable energy technologies. 

In closing, the marriage of thermodynamics and renewable energy is represented as a beacon of hope in 
the fight against climate change, environmental degradation, and energy insecurity. It stands as a testament to 
human ingenuity and innovation. As we look to the future, the lessons learned here must be drawn upon to 
continue the journey towards a sustainable, clean, and equitable energy future—a future where 
thermodynamics guides us towards a world powered by nature’s abundance, where energy is harnessed 
efficiently and responsibly, and where the well-being of both humanity and the planet is secured for generations 
to come. 
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