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Abstract: A relativistic model for polyatomic gases with an arbitrary but fixed number of moments is well-
known in the literature. The model’s balance equations have symmetric hyperbolic form in their left-hand sides
because the tensors that derivated with respect to xα are gradients of a 4-potential. Here, the symmetric form
and a 4-potential are obtained for their right-hand side also, i.e., the production terms. Moreover, this will allow
us to prove the H-theorem up to whatever order, while in other articles present in the literature, this result was
achieved only up to the second order concerning equilibrium. These obtained results can be derived by either
following the Eckart approach or the Landau-Lifshitz one.
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1. Introduction
The most diffused classical approaches to model a dissipative relativistic gas are those of Eckart [1] and

Landau-Lifshitz [2]. In the study of Carrisi and Pennisi [3], it has been proved that the two approaches are equiv-
alent; they differ only for a different definition of the deviations from equilibrium and consequent expansion
performed to obtain a linear model. We will prove here that, if these expansions would be done up to whatever
order, the two approaches would give the same result. These expansions are used to do a transformation of the
independent variables from apparently anonymous Lagrange Multipliers to variables which have an immediate
physical meaning. However this is just a stylistic issue, as in elementary geometry the algebraic expression of
a surface isn’t more significant of its parametric expression which uses ”anonymous” parameters. So, before to
convert the Lagrange Multipliers to the other variables, the two approaches are the same. The Landau-Lifshitz
approach has the advantage to obtain immediately a zero production of mass and of momentum-energy; here we
will see that it satisfies the H-theorem up to whatever order. We will see that the same result can be obtained also
with the Eckart approach. Regarding the hyperbolicity, it has already been proved that it holds up to whatever
order if the Lagrange Multipliers are used as independent variables [4, 5]. Whatever restriction on the so called
hyperbolicity region is due to the low degree of approximation which is used for the above unnecessary change
of variables. As a confirmation of this fact we see that Profs. Brini and Ruggeri implemented the articles [6, 7]

by considering a better approximation (The second order one) in [8] and obtained a bigger hyperbolicity zone.
This zone would cover all the set of possible values of independent variables if no approximation was used; this
is not possible for calculations difficulties, but we cannot expect nature to bow to our mathematical difficulties.
Other doubts about the validity of Extended Thermodynamics with many moments arose following Struchtrup’s
articles [9, 10] and similar, which studied a transition to Ordinary Thermodynamics and found some weak points.
But Extended Thermodynamics arose exactly to overcome the problems of Ordinary Thermodynamics, such
as the parabolic equations and the propagation waves with infinite speeds; so it makes no sense to test a better
theory through the worse theory that she passed. Moreover, Struchtrup too uses approximations around equilib-
rium and it makes no sense to increase the number of moments without increasing the order of approximations
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around equilibrium. Finally, the methods used for the transition to Ordinary Thermodynamic are mathemati-
cally well defined, but there is nothing physical which ensures that the result of these methods really lead to
Ordinary Thermodynamics; this doubt is reinforced by the fact the results for bulk viscosity, heat conductivity
and shear viscosity are different depending on whether the Chapman-Enskog Method or the Maxwellian Itera-
tion are used (in this latter case it even depends on the number N of moments being used). This is proved by
Demontis and Pennisi in [11]. So we don’t take into account these non-existing weakness in the sequel.

The starting point to obtain the balance equations is the Boltzmann–Chernikov equation

pα ∂α f = Q (1)

where f is the distribution function and Q the production term. Arima, Carrisi, Pennisi and Ruggeri found and
used the expression of f in [12], [5], [13] and reads

f = e
−1− χ

kB , χ =

N∑
n=0

1

mn−1
λα1α2···αnp

α1pα2 · · · pαn

(
1 +

I
mc2

)n
(2)

where kB is the Boltzmann constant, c is the speed of light, m is the particle mass, N denotes the number of
moments which is used, λα1α2···αn are the Lagrange multipliers, pα is the 4-momentum of a particle (satisfying
the relation pα pα = m2c2), I is the internal energy of a particle due to its internal modes (rotations and
vibrations).
Regarding the production term Q, if we adopt the Landau-Lifschiz approach, it has the form

Q = − 1

c2τ
ULα p

α (f − feq.) (3)

where τ is a relaxation time and ULα is the Landau-Lifshitz 4-velocity; its physical meaning has been explained
by De Groot, Rezzolla, van Leeuven, van Weert and Zanotti in [15, 16]. We will see here that it generates an
expression valid also for the Eckart approach. In particular, we will see that, with the Landau-Lifschiz approach,
the balance equations take the form

∂α
∂ h′α

∂ λ
= 0 , ∂α

∂ h′α

∂ λβ
= 0 , ∂α

∂ h′α

∂ λβ1···βn
=
Uα
c τ

∂ Qα

∂ λβ1···βn
for n ≥ 2 (4)

where the gradient of a 4-potential is present both in the left hand sides (here the 4-potential is h′α) than in the
right hand sides (here the 4-potential isQα). A less elegant form, but with the same properties, will be obtained
by following the Eckart approach and it reads:

∂α
∂ h′α

∂ λβ1···βn
=
Uα
c τ

(
∂ Q̃α

∂ λ

∂ g

∂ λβ1···βn
+
∂ Q̃α

∂ λµ

∂ gµ
∂ λβ1···βn

+
∂ Q̃α

∂ λβ1···βn

)
for n ≥ 2 (5)

where the 4-potential in the right hand side is Q̃α while g and gµ are known functions which will be presented
below. The plan of this article is the following: In the next section we will see the expressions at equilibrium
which is the same for both approaches. In section 3 we will see the balance equations outside equilibrium
by separating the two approaches into 2 subsections; the above expressions (4) and (5) will be found and the
H-theorem will be proved for them up to whatever order with respect equilibrium (obviously, refraining from
making approximations).
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In section 4 a transformation will be found which allows to obtain the variables of the Landau-Lifschiz
approach in terms of those in Eckart approach. Obviously, the same transformation can be done in the inverse
direction but we will refrain to do it for the sake of brevity. Approximations will be used, up to first order with
respect to equilibrium, only in its subsection 1 to see how previously result in literature can be recovered from
the present one. In its subsection 2, approximations will be used up to second order only to show that the results
previously obtained in literature don’t hold at any order.

2. The model for relativistic polyatomic gas at equilibrium
At equilibrium the Landau-Litschiz and the Eckart approach give the same expressions. In particular we

have the balance equations

∂α V
α
E = 0 , ∂α T

αβ
E = 0 , where V α

E = ρUα , TαβE =
e

c2
UαUβ + p hαβ

Uα U
α = c2 , hαβ = −gαβ + UαUβ

c2
(The projector into the subspace orthogonal toUα)

Here ρ is the mass density, Uα is the 4-velocity, e the energy density and p the pressure. If we want to find
an approach which holds for whatever type of gas, we can introduce the 4-potential

h′α = − 4πm3c5 h0
(
λE , γ

) λαE
γ
, where γ =

mc

kB

√
λαE λ

E
α → λαE λ

E
α =

(
kBγ

mc

)2

(The constant coefficients have been introduced for an easier comparison with expressions previously
known in literature). It follows

V α
E =

∂ h′α

∂ λE
= − 4πm3c5

∂ h0
∂ λE

λαE
γ
, TαβE =

∂ h′α

∂ λEβ
= − 4πm3c5

(
h0
γ
hαβ +

∂ h0
∂ γ

λαE λ
β
E

λµE λ
E
µ

)

As consequence of these results we have

ρ = − 4 kB πm
2c3

∂ h0
∂ λE

, Uα =
mc2

kB

λαE
γ
, p = 4πm3c5

h0
γ
, e = − 4πm3c5

∂ h0
∂ γ

(6)

If we know the constitutive function e = e(ρ , γ), then (6)4 becomes

e

(
− 4 kB πm

2c3
∂ h0
∂ λE

, γ

)
= − 4πm3c5

∂ h0
∂ γ

which is a differential equation from which to deduce h0. For example, if e
ρ c2

= ϵ(γ) and we define η(γ)
from η′(γ) = ϵ(γ), this equation becomes ∂ h0∂ γ − kB

m η′ ∂ h0∂ λE
= 0. By considering h0 a composite function of

H0(X , Y ) and ofX = λE + kB
m η(γ), Y = γ, this differential equation becomes ∂ H0

∂ Y = 0 so that the general
solution is h0 = H0

(
λE + kB

m η(γ)
)
for whatever single variable functionH0. A further subcase is that when

ϵ =
e

ρ c2
=

∫ +∞
0 J22 (γ∗)

(
1 + I

mc2

)
φ(I) d I∫ +∞

0 J21 (γ∗)φ(I) d I
→ η(γ) = − ln

∫ +∞

0
J21 (γ∗)φ(I) d I
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Here Jm,n (γ) =

∫ +∞

0
e−γ cosh s sinhm s coshn s d s

which can be related to the modified Bessel functionsKn (γ) =
∫ +∞
0 e−γ cosh s cosh (ns) d s; moreover γ∗ =

γ
(
1 + I

mc2

)
.

By taking H0(X) = e
−1−mX

kB we find h0 = e
−1−mλE

kB

∫ +∞
0 J21 (γ∗)φ(I) d I and (6)1,3 become

ρ = 4πm3c3 e
−1−mλE

kB

∫ +∞

0
J21 (γ∗)φ(I) d I ,

p

ρ
=
c2

γ

as in Equations (26) and (41) of [12]. For the sake of simplicity, we will use in the sequel this simpler expression.

3. The dissipative case and the production term
3.1. The Eckart approach

The balance equations for this case have been found by Arima, Carrisi, Pennisi, Ruggeri in [13], by mul-
tiplying Equation (1) with c

mn−1 p
α1pα2 · · · pαn

(
1 + I

mc2

)n and integrating in d I d P⃗ , the balance equations
for this case have been found

∂αA
αα1···αn = Iα1···αn , for n = 0 , 1 , · · · , N (7)

where

Aαα1···αn =
∂ h′α

∂ λα1···αn

, h′α = −kB c
∫
ℜ3

∫ +∞

0
f pα φ(I) d I d P⃗

Iα1···αn =
c

mn−1

∫
ℜ3

∫ +∞

0
Qpα1pα2 · · · pαn

(
1 +

I
mc2

)n
φ(I) d I d P⃗

(8)

In particular, (8)1 for n = 0, 1 are respectively the mass conservation law and that of energy-momentum;
obviously, we have Aα = V α, Aαα1 = Tα. Moreover, (8)2 for n = 0, 1 must give I = 0, Iα = 0. It is easy to
see that the left hand side of the balance Equation (7) takes the elegant expression ∂α ∂ h′α

∂ λα1···αn
. We will show

now that also for the right hand side we can obtain a similar expression Iα1···αn = Uα
c τ

∂ Qα

∂ λβ1···βn
with Qα which

will be found later and τ a relaxation time. To this end we need to know the production term Q. Its expression
proposed in [14] was an approximated one and, in fact, it gave an entropy production σ which was non negative
only up to second order with respect to equilibrium. To obtain σ ≥ 0 up to whatever order, we note firstly that,
for every expressions of the functions g (λα1α2···αn), gµ (λα1α2···αn) with n ≥ 2, we can define λE , λEµ from

λ = λE + g (λα1α2···αn) , λµ = λEµ + gµ (λα1α2···αn) (9)

This can be also considered as a change of independent variables from λ, λµ, λα1α2···αn to λE , λEµ ,
λα1α2···αn for n ≥ 2. We choose here g (λα1α2···αn), gµ (λα1α2···αn) the solution of the conditions gE = 0,
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gEµ = 0 and of

Uα

∫
ℜ3

∫ +∞

0
fE

(
e

−1
kB

[
mg+pµgµ

(
1+ I

mc2

)
+∆χ

]
− 1

)
pα φ(I) d I d P⃗ = 0

Uα

∫
ℜ3

∫ +∞

0
fE

(
e

−1
kB

[
mg+pµgµ

(
1+ I

mc2

)
+∆χ

]
− 1

)
pα pβ

(
1 +

I
mc2

)
φ(I) d I d P⃗ = 0

i.e., Uα

∫
ℜ3

∫ +∞

0
fE e

−1
kB

[
mg+pµgµ

(
1+ I

mc2

)
+∆χ

]
pα φ(I) d I d P⃗ =

UαV
α

mc
=
ρ c

m

Uα

∫
ℜ3

∫ +∞

0
fE e

−1
kB

[
mg+pµgµ

(
1+ I

mc2

)
+∆χ

]
pα φ(I) d I d P⃗ =

Uα
c
TαβE =

e

c
Uβ

(10)

with∆χ =
∑N

n=2
1

mn−1 λα1α2···αnp
α1pα2 · · · pαn

(
1 + I

mc2

)n. Wewill prove in the appendix that this problem
gives one and only one solution. After that, we propose for Q the following expression

Q = − Uαp
α

c2τ
fE

(
e

−1
kB

[
mg+pµgµ

(
1+ I

mc2

)]
e

−∆χ
kB − 1

)
(11)

We note that, with this expression of Q we have QE = 0 and (8)3 gives I = 0, Iα = 0 automatically
(Thanks to (10)) so that the conservation laws of mass and of momentum-energy are satisfied up to whatever
order; moreover, we prove now the following theorem:
Theorem 1. ”The production terms Iα1···αn of the balance equations in Equation (8)2 can be expressed as:

Iα1···αn =
Uα
c τ

∂ Qα

∂ λα1α2···αn

, with Qα = g
ρ

c
Uα +

e

c3
(Uµgµ)U

α+

+ kB

∫
ℜ3

∫ +∞

0
fE

(
e

−1
kB

[
mg+pµgµ

(
1+ I

mc2

)
+∆χ

]
+

∆χ

kB

)
pα φ(I) d I d P⃗ ” .

(12)

(Note that ρ, Uα and the energy e depend on λE , λEµ and not on λα1α2···αn for n ≥ 2).
Proof 1. To prove the previous result, we can calculate

∂ Qα

∂ λα1α2···αn

=
ρ

c
Uα

∂ g

∂ λα1···αn

+
e

c3
Uµ Uα

∂ gµ
∂ λα1···αn

−∫
ℜ3

∫ +∞

0
fE e

−1
kB

[
mg+pµgµ

(
1+ I

mc2

)
+∆χ

] [
m

∂ g

∂ λα1α2···αn

+ pµ
∂ gµ

∂ λα1···αn

(
1 +

I
mc2

)]
pα·

· φ(I) d I d P⃗ −
∫
ℜ3

∫ +∞

0
fE

(
e

−1
kB

[
mg+pµgµ

(
1+ I

mc2

)
+∆χ

]
− 1

)
∂∆χ

∂ λα1···αn

pα φ(I) d I d P⃗

by contracting with Uα
c τ , and taking into account that U

α Uα = c2 we obtain

Uα
c τ

∂ Qα

∂ λα1α2···αn

=
ρ

τ

∂ g

∂ λα1···αn

+
e

c2τ
Uµ

∂ gµ
∂ λα1···αn

−

Uα
c τ

∫
ℜ3

∫ +∞

0
fE e

−1
kB

[
mg+pµgµ

(
1+ I

mc2

)
+∆χ

] [
m

∂ g

∂ λα1α2···αn

+ pµ
∂ gµ

∂ λα1···αn

(
1 +

I
mc2

)]
pα·

· φ(I) d I d P⃗ − Uα
c τ

∫
ℜ3

∫ +∞

0
fE

(
e

−1
kB

[
mg+pµgµ

(
1+ I

mc2

)
+∆χ

]
− 1

)
∂∆χ

∂ λα1···αn

pα φ(I) d I d P⃗

5
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which can be reordered as

Uα
c τ

∂ Qα

∂ λα1α2···αn

=

=
1

c2 τ

∂ g

∂ λα1···αn

(
ρ c2 − Uαmc

∫
ℜ3

∫ +∞

0
fE e

−1
kB

[
mg+pµgµ

(
1+ I

mc2

)
+∆χ

]
pα φ(I) d I d P⃗

)
+

+
1

c2 τ

∂ gµ
∂ λα1···αn

(
eUµ − Uαc

∫
ℜ3

∫ +∞

0
fE e

−1
kB

[
mg+pµgµ

(
1+ I

mc2

)
+∆χ

]
pµ ·

·
(
1 +

I
mc2

)
pαφ(I) d I d P⃗

)
+ c

∫
ℜ3

∫ +∞

0
Q

∂∆χ

∂ λα1···αn

φ(I) d I d P⃗

and here the coefficients of ∂ g
∂ λα1···αn

and of ∂ gµ
∂ λα1···αn

are identically zero for (10)3,4. Moreover it has been used

fE

(
e

−1
kB

[
mg+pµgµ

(
1+ I

mc2

)]
e

−∆χ
kB − 1

)
= − c2τ

Uαpα
Q which follows from (11). Finally,∆χ is given after eqs.

(10) and it yelds ∂∆χ
∂ λα1···αn

= 1
mn−1 p

α1pα2 · · · pαn
(
1 + I

mc2

)n, so that the above relation becomes

Uα
c τ

∂ Qα

∂ λα1α2···αn

= c

∫
ℜ3

∫ +∞

0
Q

1

mn−1
pα1pα2 · · · pαn

(
1 +

I
mc2

)n
φ(I) d I d P⃗n

Thanks to the definition (8)2, this gives the result Uα
c τ

∂ Qα

∂ λα1α2···αn
= Iα1···αn . In this way the proof of (12)

and of the theorem is completed.

Hence the balance equations take the elegant form (4) where the gradient form with respect to λβ1···βn is
present both in the left and in the right hand side. Obviously, there is in (4) the drawback that the left hand sides
uses the variables λ, λα, λα1···αn while the right hand sides uses the variables λE , λEα , λα1···αn ; however we
can express Qα in terms of the old variables by substituting in it the inverse transformation of (9). In this way
Qα is the composite function of Q̃α (λ , λα , λα1···αn) and of λ = λE + g, λα = λEα + gα, λα1···αn and (4)3
becomes (5) where the gradient form appears also in the right hand side even if through 3 terms.

There remains to prove in this section the
H-Theorem 1. ” The entropy production σ =

∑N
n=2 I

β1···βnλβ1···βn is non negative and is zero only at equilib-
rium”.

To prove it we calculate

σ = − Uα
c τ

∫
ℜ3

∫ +∞

0
fE

(
e

−1
kB

[
mg+pµgµ

(
1+ I

mc2

)]
e

−∆χ
kB − 1

)
∆χpα φ(I) d I d P⃗ =

=
kBUα
c τ

∫
ℜ3

∫ +∞

0
fE

(
− e

−1
kB

[
mg+pµgµ

(
1+ I

mc2

)]
e

−∆χ
kB + 1

)
pα+

+
1

kB

[
∆χ+mg + gµ p

µ

(
1 +

I
mc2

) ]
φ(I) d I d P⃗

(13)

Here the underlined terms give a zero contribute thanks to (10); they have been included for convenience
of calculations. In fact, in this way the function to be integrated has the form

F (x) =
(
1 − e−x

)
x with x =

1

kB

[
∆χ+ mg + gµ p

µ

(
1 +

I
mc2

)]

6
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and we have

F ′(x) = 1 + e−x(x− 1) , F ′′(x) = e−x(−x+ 2) , F ′(0) = 0 , lim
x→+∞

F ′(x) = 1

From these calculations we note that for x < 2 the function F ′(x) is increasing so that it can be have only
a root which is x = 0; for x ≥ 2 it is a decreasing function and goes from 1 + e−2 to 1 so that F ′(x) > 0 for
x ≥ 2. It follows that the function F (x) is decreasing for x < 0 and increasing for x > 0; therefore it has a
minimum value in x = 0. Since g(0) = 0, it follows that g(0) > 0 ∀ x ̸= 0, as we wanted to prove.
In order to compare the present results with those of Pennisi and Ruggeri in [14], we conclude this subsection
by seeing its implication on the linear expressions. At first order with respect to equilibrium, Equations (10)
become

ρ c2g(1) + e g(1)µ Uµ + Uα

N∑
n=2

Aαα1···αn
E λα1···αn = 0 ,

e Uβg(1) + UαA
µαβ
E g(1)µ + Uα

N∑
n=2

Aαβα1···αn

E λα1···αn = 0

(14)

where g(1) and g(1)µ denote the first order terms of g and gµ respectively. But in the Eckart approach we have
also the following conditions:

V α − V α
E = 0 , UαUβ

(
Tαβ − TαβE

)
= 0 ,

hδαUβ

(
Tαβ − TαβE

)
= − qδ → Uβ

(
Tαβ − TαβE

)
= qα

(15)

where (15)3 isn’t a condition but only the definition of the heat flux qα; moreover, (15)4 is a consequence of
(15)2,3 and of Uα qα = 0. The conditions (15)1,2 at first order with respect to equilibrium become

(
∂ V α

∂ λ

)
E

(
λ− λE

)(1)
+

(
∂ V α

∂ λµ

)
E

(
λµ − λEµ

)(1)
+

N∑
n=2

(
∂ V α

∂ λα1···αn

)
E

λα1···αn = 0 ,

UαUβ

[(
∂ Tαβ

∂ λ

)
E

(
λ− λE

)(1)
+

(
∂ Tαβ

∂ λµ

)
E

(
λµ − λEµ

)(1)
+

+
N∑
n=2

(
∂ Tαβ

∂ λα1···αn

)
E

λα1···αn

]
= 0

(16)

But V α = Aα, Tαβ = Aαβ and we can use (10)1,2 with f given by (2) which imply

∂ V α

∂ λ
= − m

kB
V α ,

∂ V α

∂ λµ
= − m

kB
Tαµ ,

∂ V α

∂ λα1···αn

= − m

kB
Aαα1···αn

∂ Tαβ

∂ λ
= − m

kB
Tαβ ,

∂ Tαβ

∂ λµ
= − m

kB
Aαβµ ,

∂ Tαβ

∂ λα1···αn

= − m

kB
Aαβα1···αn

7
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Thanks to these relations, (16) becomes

ρUα
(
λ− λE

)(1)
+
( e
c2
UαUµ + phαµ

) (
λµ − λEµ

)(1)
+

N∑
n=2

Aαα1···αn
E λα1···αn = 0

eUα
(
λ− λE

)(1)
+ Uβ A

αβµ
E

(
λµ − λEµ

)(1)
+ Uβ

N∑
n=2

Aαβα1···αn

E λα1···αn = − kB
m

qα

(17)

We can deduce from these equations
∑N

n=2A
αα1···αn
E λα1···αn and Uβ

∑N
n=2A

αβα1···αn

E λα1···αn ; by substi-
tuting them in (14) this equation becomes

ρ c2
[
g(1) −

(
λ− λE

)(1)]
+ e

[
g(1)µ −

(
λµ − λEµ

)(1)]
Uµ = 0 ,

e Uβ
[
g(1) −

(
λ− λE

)(1)]
+ UαA

µαβ
E

[
g(1)µ −

(
λµ − λEµ

)(1)]− kB
m

qβ = 0
(18)

Now Equation (18)1, (18)2 contracted with Uβ and (18)2 contracted with hδβ give

g(1) =
(
λ− λE

)(1)
, g(1)µ Uµ =

(
λµ − λEµ

)(1)
Uµ

hµδ
[
g(1)µ −

(
λµ − λEµ

)(1)]
=

3

ρc4θ1,2

kB
m

qδ
(19)

where Equation (14), found Arima, Carrisi, Pennisi and Ruggeri in [13] has been used. Now (11) can be written
as

Q = − Uαp
α

c2τ
fE

[
f

fE
− 1 +

f

fE

(
e

−1
kB

[
m (g−λ+λE)+pµ(gµ−λµ+λEµ )

(
1+ I

mc2

)]
− 1

)]

Here we can linearize the term f
fE

(
e

−1
kB

[
m (g−λ+λE)+pµ(gµ−λµ+λEµ )

(
1+ I

mc2

)]
− 1

)
, i.e., substitute it with

(
f

fE

)(0)(
e

−1
kB

[
m (g−λ+λE)+pµ(gµ−λµ+λEµ )

(
1+ I

mc2

)]
− 1

)(1)

+

+

(
f

fE

)(1)(
e

−1
kB

[
m (g−λ+λE)+pµ(gµ−λµ+λEµ )

(
1+ I

mc2

)]
− 1

)(0)

=

=
−1

kB

[
m
(
g − λ+ λE

)(1)
+ pµ

(
gµ − λµ + λEµ

)(1)(
1 +

I
mc2

)]

Moreover, we use the result (19) and find

Q = − Uαp
α

c2τ
fE

[
f

fE
− 1 + pµ qµ

3

mρc4θ1,2

(
1 +

I
mc2

)]
which is the expression that Arima, Carrisi, Pennisi and Ruggeri have found in Equation (43) of [13].
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3.2. The Landau-Lifschiz approach

We note that all the considerations in the previous subsection, up to its Equation (4), can be repeated also
in the present approach and Equations (10) simply means that

Uα
(
V α − V α

eq

)
= 0 , Uα

(
Tαβ − Tαβeq

)
= 0 (20)

because by using (9), we have

fE

(
e

−1
kB

[
mg+pµgµ

(
1+ I

mc2

)
+∆χ

]
− 1

)
= f − fE

Moreover, the expression (11) of the production term can be written simply as

Q =
−Uα p

α

c2τ
(f − fE)

From this viewpoint it seems that the definition of deviations from equilibrium, which is present in the
Landau-Lifschiz approach, was purposelymade to automatically achieve zeromass production and zeromomentum-
energy production:

I = − ULα
c2τ

(V α − V α
E ) = 0 , Iβ = − ULα

c2τ

(
Tαβ − TαβE

)
= 0

So also in this approach we obtain the Equation (4), where the gradient form with respect to λβ1···βn is
present both in the left and in the right hand side. Moreover, we don’t have here the drawback which was
present in (4) which forced us to transform it in the less elegant form (5). It is true that also in the present
approach the left hand sides of (4) uses the variables λ, λα, λα1···αn while the right hand sides uses the variables
λE , λEα , λα1···αn ; but, instead of expressing Qα in terms of the old variables, we can express the left hand
sides (i.e., h′α) in terms of the new variables. Since an invertible change of independent variables maintains the
hyperbolicity requirement, as long as this change of independent variables is not done in an approximated way,
this requirement is here preserved. Also the proof of the H-Theorem which is present in the previous subsection,
between Equations (5) and (14) still holds also in the present case.

We see also that the expression of Q proposed by Carrisi and Pennisi in Equation (7) of [4] (with a1 = 0,
a2 = 1/τ ) for the Eckart approach is the same of the present one (11), except to identify the functions ψ and ψµ
of [4] respectively with the functions g and gµ which are here present. However, they were introduced in [4] ad
hoc, as a mathematical tool; instead here we have seen that they come from trying to adapt the Eckart approach
to the Landau-Lifschiz approach.

9
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4. Determination of qαL and Pαβ in terms of the variables in the Eckart ap-
proach
Both the approaches are the same at equilibrium so that they give the same values for ρ, Uα, e and p; in

particular they give

ρUα =
∂ h′αE
∂ λE

, TαβE =
e

c2
UαUβ + p hαβ =

∂ h′αE
∂ λEβ

with

h′αE = − kBc

∫
ℜ3

∫ +∞

0
fE p

α φ(I) d I d P⃗ , fE = e
−1− 1

kB

[
mλE+λEµ p

µ
(
1+ I

mc2

)]

Outside equilibrium, with the Eckart approach we have f = fEk with

fEk = fE e
− 1

kB

[
m (λ−λE)+(λµ −λEµ )pµ

(
1+ I

mc2

)
+∆χ

]

∆χ =

N∑
n=2

1

mn−1
λα1···αnp

α1 · · · pαn

(
1 +

I
mc2

)n
while with the Landau-Lifschiz approach we have f = fL with

fL = fE e
− 1

kB

[
mg+gµpµ

(
1+ I

mc2

)
+∆χ

]
→

fL

fEk
= e

− 1
kB

[
m (g−λ+λE)+(gµ −λµ +λEµ )pµ

(
1+ I

mc2

)]
,

fL − fE
fE

=
fEk

fE

(
e
− 1

kB

[
m (g−λ+λE)+(gµ −λµ +λEµ )pµ

(
1+ I

mc2

)]
− 1

)
+
fEk

fE
− 1

(21)

Now qαL and Pαβ are defined by qαL = V α
L − ρUαL and Pαβ = TαβL − TαβE so that we have the system

qαL = mc

∫
ℜ3

∫ +∞

0
fE

fL − fE
fE

pα φ(I) d I d P⃗ ,

Pαβ = c

∫
ℜ3

∫ +∞

0
fE

fL − fE
fE

pα pβ
(
1 +

I
mc2

)
φ(I) d I d P⃗

Uα q
α
L = 0 , Uα P

αβ = 0

(22)

for the determination of g − λ + λE , gµ − λµ + λEµ , qαL, Pαβ . To this end, from (21)3 we have that f
L−fE
fE

at the order zero is zero, while at the orders 1 and 2 is respectively given by

(
fL − fE
fE

)(1)

=

(
fEk

fE

)(0) (
e
− 1

kB

[
m (g−λ+λE)+(gµ −λµ +λEµ )pµ

(
1+ I

mc2

)]
− 1

)(1)

+

+

(
fEk

fE

)(1) (
e
− 1

kB

[
m (g−λ+λE)+(gµ −λµ +λEµ )pµ

(
1+ I

mc2

)]
− 1

)(0)

+

(
fEk

fE
− 1

)(1)

=

= − 1

kB

[
m
(
g − λ + λE

)(1)
+
(
gµ − λµ + λEµ

)(1)
pµ
(
1 +

I
mc2

)]
+

(
fEk

fE
− 1

)(1)

(23)

10
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(
fL − fE
fE

)(2)

=

(
fEk

fE

)(0) (
e
− 1

kB

[
m (g−λ+λE)+(gµ −λµ +λEµ )pµ

(
1+ I

mc2

)]
− 1

)(2)

+

+

(
fEk

fE

)(1) (
e
− 1

kB

[
m (g−λ+λE)+(gµ −λµ +λEµ )pµ

(
1+ I

mc2

)]
− 1

)(1)

+

+

(
fEk

fE

)(2) (
e
− 1

kB

[
m (g−λ+λE)+(gµ −λµ +λEµ )pµ

(
1+ I

mc2

)]
− 1

)(0)

+

(
fEk

fE
− 1

)(2)

where the underlined terms are zero.

4.1. The expressions of qαL and Pαβ at first order with respect to equilibrium

By using the above passages we see that the system (22) at first order becomes

(qαL)
(1) = mc

∫
ℜ3

∫ +∞

0
fE

(
fL − fE
fE

)(1)

pα φ(I) d I d P⃗ =

= − m

kB

(
g − λ + λE

)(1)
ρUα − m

kB

(
gµ − λµ + λEµ

)(1)
TαµE + (V α

Ek − V α
E )(1) ,

(
Pαβ

)(1)
= c

∫
ℜ3

∫ +∞

0
fE

(
fL − fE
fE

)(1)

pα pβ
(
1 +

I
mc2

)
φ(I) d I d P⃗ =

= − m

kB

(
g − λ + λE

)(1)
TαβE − m

kB

(
gµ − λµ + λEµ

)(1)
AαβµE +

(
TαβEk − TαβE

)(1)
Uα (qαL)

(1) = 0 , Uα

(
Pαβ

)(1)
= 0

(24)

Here too the underlined term is zero, while

TαβE =
e

c2
UαUβ + p hαβ , AαβµE = ρ θ0,2U

αUβUµ + ρ c2θ1,2U
(αhβµ) ,(

TαβEk − TαβE

)(1)
= π hαβ +

2

c2
U (αqβ) + t<αβ>

as it was proved by Arima, Carrisi, Pennisi and Ruggeri in [13], in particular from its Equation (14). By contract-
ing Equation (24)1 with Uα, eq. (24)2 with UαUβ and by taking into account (24)2,3 we obtain(

g − λ + λE
)(1)

= 0 , Uµ
(
gµ − λµ + λEµ

)(1)
= 0 (25)

By contracting Equation (24)2 with Uαhδβ and by taking into account (24)3 we obtain

(
gδ − λδ + λEδ

)(1)
= − 3

ρ c4θ1,2

kB
m

qδ (26)

There remains to contract Equation (24)1 with hδα and Equation (24)2 with hδαh
ψ
β ; by using Equations (28),

(26) the result is (
qδL

)(1)
= − 3 p

ρ c4θ1,2
qδ ,

(
P δψ

)(1)
= π hδψ + t<δψ> (27)

Regarding the first term of this equation we note that it can be rewritten by using the recurrence relations

11
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found by Arima, Carrisi, Pennisi and Ruggeri in [13], Equation (16) and Equation (12)1,2 ;it becomes

(
qδL

)(1)
= − ρ

e+ p
qδ

which is the same value found by Carrisi and Pennisi in (7)1 of [3] which concerned an approach with a linear
deviation from equilibrium. Since we will see in the next subsection that

(
qδL
)(2) ̸= 0, the expression that

Carrisi and Pennisi found in Equation (7)1 of [3] cannot be assumed to hold up to whatever order with respect to
equilibrium.

4.2. The expressions of qαL and Pαβ at second order with respect to equilibrium

We have to consider Equation (23)2; to this end, we need(
e
− 1

kB

[
m (g−λ+λE)+(gµ −λµ +λEµ )pµ

(
1+ I

mc2

)]
− 1

)(2)

and (
e
− 1

kB

[
m (g−λ+λE)+(gµ −λµ +λEµ )pµ

(
1+ I

mc2

)]
− 1

)(1)

(28)

Since the Taylor’s expansion of the function ex around x = 0 and up to second order is 1 + x + x2

2 , we
have (

e
− 1

kB

[
m (g−λ+λE)+(gµ −λµ +λEµ )pµ

(
1+ I

mc2

)]
− 1

)(2)

= − m

kB

(
g − λ + λE

)(2) −
1

kB

[(
gµ − λµ + λEµ

)(2)
pµ
(
1 +

I
mc2

)]
+

1

2

(
m
(
g − λ + λE

)(1)
kB

)2

+

+
1

(kB)
2

[
m
(
g − λ + λE

)(1) (
gµ − λµ + λEµ

)(1)
pµ
(
1 +

I
mc2

)]
+

1

2 (kB)
2

[(
gµ − λµ + λEµ

)(1)
pµ
(
1 +

I
mc2

)][(
gν − λν + λEν

)(1)
pν
(
1 +

I
mc2

)]
,

(
e
− 1

kB

[
m (g−λ+λE)+(gµ −λµ +λEµ )pµ

(
1+ I

mc2

)]
− 1

)(1)

= − m

kB

(
g − λ + λE

)(1)−
1

kB

[(
gµ − λµ + λEµ

)(1)
pµ
(
1 +

I
mc2

)]

By using (28) and (26), we obtain(
e
− 1

kB

[
m (g−λ+λE)+(gµ −λµ +λEµ )pµ

(
1+ I

mc2

)]
− 1

)(2)

= − m

kB

(
g − λ + λE

)(2) −
1

kB

[(
gµ − λµ + λEµ

)(2)
pµ
(
1 +

I
mc2

)]
+

1

2

(
3

ρ c4θ1,2

1

m

)2

(qµp
µ)2
(
1 +

I
mc2

)2

,

12
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(
e
− 1

kB

[
m (g−λ+λE)+(gµ −λµ +λEµ )pµ

(
1+ I

mc2

)]
− 1

)(1)

=
3

ρ c4θ1,2

1

m
qµp

µ

(
1 +

I
mc2

)

By using these expressions in (23)2 it becomes

(
fL − fE
fE

)(2)

= − m

kB

(
g − λ + λE

)(2) −
1

kB

[(
gµ − λµ + λEµ

)(2)
pµ
(
1 +

I
mc2

)]
+

1

2

(
3

ρ c4θ1,2

1

m

)2

(qµp
µ)2
(
1 +

I
mc2

)2

+

+

(
fEk

fE

)(1)
3

ρ c4θ1,2

1

m
qµp

µ

(
1 +

I
mc2

)
+

(
fEk

fE
− 1

)(2)

We can now substitute this result in (22) so that the homogeneous second order part of this system is

(qαL)
(2) = mc

∫
ℜ3

∫ +∞

0
fE

(
fL − fE
fE

)(2)

pα φ(I) d I d P⃗ =

= − m

kB

(
g − λ + λE

)(2)
ρUα − m

kB

(
gµ − λµ + λEµ

)(2)
TαµE +

+
1

2

(
3

ρ c4θ1,2

)2

AαµνE qµ qν +
3

ρ c4θ1,2
qµ
(
TαµEk

)(1)
+ (V α

Ek)
(2) =

= − m

kB

(
g − λ + λE

)(2)
ρUα − m

kB

(
gµ − λµ + λEµ

)(2)
TαµE +

+
3

ρ c4θ1,2
qµ

(
π hαµ +

1

2 c2
Uαqµ + t<αµ>

)
,

(29)

(
Pαβ

)(2)
= c

∫
ℜ3

∫ +∞

0
fE

fL − fE
fE

pα pβ
(
1 +

I
mc2

)
pµ
(
1 +

I
mc2

)
φ(I) d I d P⃗ =

= − m

kB

(
g − λ + λE

)(2)
TαβE − m

kB

(
gµ − λµ + λEµ

)(2)
AαβµE +

+
1

2

(
3

ρ c4θ1,2

)2

AαβµνE qµ qν +
3

ρ c4θ1,2
qµ

(
AαβµEk

)(1)
+
(
TαβEk

)(2)
,

Uα (qαL)
(2) = 0 , Uα

(
Pαβ

)(2)
= 0

where the underlined terms are zero, while

AαβµνE = ρ θ0,3 U
αUβUµUν + ρ c2θ1,3 U

(αUβhµν) + ρ c4θ2,3 h
(αβhµν) ,(

AαβµEk

)(1)
=

1

4c4
∆UαUβUµ −

(
3

4c2
N∆

D4
∆ + 3

NΠ

D4
Π

)
h(αβUµ)

+
3

c2
N3

D3
q(αUβUµ) +

3

5

N31

D3
h(αβqµ) + 3C5t

(<αβ>3Uµ)

as it can be seen from Equations (14) and (35) found by Arima, Carrisi, Pennisi and Ruggeri in [13] (∆ is the
15th variable). By contracting Equation (29)1 with Uα

c2
, Equation (29)2 with

UαUβ

c4
and by taking into account

13
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(29)3,4 we obtain

0 = − m

kB
ρ
(
g − λ + λE

)(2) − m

kB

e

c2
Uµ

(
gµ − λµ + λEµ

)(2)
+

3

2 ρ c6θ1,2
qµ q

µ ,

0 = − m

kB

e

c2
(
g − λ + λE

)(2) − m

kB
ρ θ0,2 U

µ
(
gµ − λµ + λEµ

)(2)
+

+

(
− 3

4

θ1,3

ρ c6 (θ1,2)
2 +

3

ρ c6θ1,2

N3

D3

)
qµqµ

This system fully determine
(
g − λ + λE

)(2) and Uµ (gµ − λµ + λEµ
)(2).

By contracting Equation (29)2 with Uαhδβ and by taking into account (29)3,4 we obtain

hµδ
(
gµ − λµ + λEµ

)(2)
= − kB

m

9

ρ2 c8 (θ1,2)
2 qµ

(
AαβµEk

)(1)
Uαh

δ
β =

=
kB
m

9

ρ2 c8 (θ1,2)
2

[(
1

4

N∆

D4
∆ + c2

NΠ

D4
Π

)
qδ + C5 c

2 t<δµ>3 qµ

] (30)

There remains to contract Equation (29)1 with hδα and Equation (29)2 with hδαh
ψ
β ; the result is

(
qδL

)(2)
= − mp

kB
hδµ

(
gµ − λµ + λEµ

)(2)
+

3

ρ c4θ1,2

(
−π qδ + t<δµ> qµ

)
, (31)

(
P δψ

)(2)
= − m

kB

[
p
(
g − λ + λE

)(2)
+

1

3
ρ c2θ1,2 U

µ
(
gµ − λµ + λEµ

)(2)]
hδψ+

+
3

ρ c4 θ1,2

(
1

2

θ2,3
θ1,2

− 1

5

N31

D3

) (
2 qδ qψ − qµ qµ h

δψ
)

Obviously, here the above found expressions of
(
g − λ + λE

)(2), Uµ (gµ − λµ + λEµ
)(2) and of

hδµ
(
gµ − λµ + λEµ

)(2) must be used.

5. Conclusions
We have obtained the gradient form of the balance equations not only for their left hand sides, but also for

their right hand sides; this result has been obtained both with the Eckart approach and the Landau-Lifshitz one.
In this way the symmetric form and a 4-potential is also obtained for both sides. Moreover, this form allowed
to prove the hyperbolicity of the equations and the H-theorem up to whatever order. We have also seen that the
Eckart approach and the Landau-Lifshitz one are equivalent if the Lagrange multipliers λα1···αn are taken as
independent variables. The difference comes only after a different definition of the deviations of λ−λE and of
λα − λEα ; in any case, there is an invertible transformation between their independent variables.
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Appendix: Proof of the unicity of the solution of Equations (10) and of gE = 0,
gEµ = 0

The equations (10) calculated at equilibrium are identically satisfied; so they are equivalent to their deriva-
tives with respect to λα1···αn1

(with n1 ≥ 2) which now we express, by using a compact notation, as λAn1
.

These derivatives are

Uα
− kB

∫
ℜ3

∫ +∞

0
fE F

[
m

∂ g

∂ λAn1

+ pµ
∂ gµ
∂ λAn1

(
1 +

I
mc2

)
+

∂∆χ

∂ λAn1

]
pα φ(I) d I d P⃗ = 0

Uα
− kB

∫
ℜ3

∫ +∞

0
fE F

[
m

∂ g

∂ λAn1

+ pµ
∂ gµ
∂ λAn1

(
1 +

I
mc2

)
+

∂∆χ

∂ λAn1

]
pα pβ

(
1 +

I
mc2

)
·

· φ(I) d I d P⃗ = 0 , with F = e
−1
kB

[
mg+pµgµ

(
1+ I

mc2

)
+∆χ

]
(32)

which, calculated at equilibrium, give

− m

kB

[(
∂ g

∂ λAn1

)
E

Uα V
α
E +

(
∂ gµ
∂ λAn1

)
E

Uα T
αµ
E

]
=

m

kB
UαA

αAn1
E

− m

kB

[(
∂ g

∂ λAn1

)
E

Uα T
αβ
E +

(
∂ gµ
∂ λAn1

)
E

UαA
αβµ
E

]
=

m

kB
UαA

αβAn1
E

By contracting these equations with λAn1
and taking the sum for n1 = 2, · · · , N they become

g(1) Uα V
α
E + g(1)µ Uα T

αµ
E = −

N∑
n1=2

UαA
αAn1
E λAn1

,

g(1) Uα T
αβ
E + g(1)µ UαA

αβµ
E = −

N∑
n1=2

UαA
αβAn1
E λAn1

(33)

The first one of these equations, the second one contracted with Uβ and the second one contracted with hδβ
constitute a system by using also the expressions

V α
E = ρUα , TαµE =

e

c2
UαUµ + p hαµ , AαβµE = ρ θ0,2 U

αUβUµ + ρ c2θ1,2 U
(αhβµ)
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This system has the unique solution

g(1) =

∣∣∣∣∣∣∣∣∣∣∣
ρ e

c2

e
c2

ρ θ0,2

∣∣∣∣∣∣∣∣∣∣∣

−1

N∑
n1=2

( e
c6
UαUβ A

αβAn1
E − ρ θ0,2 UαA

αAn1
E

)
λAn1

Uµ g(1)µ =

∣∣∣∣∣∣∣∣∣∣∣
ρ e

c2

e
c2

ρ θ0,2

∣∣∣∣∣∣∣∣∣∣∣

−1

N∑
n1=2

( e
c4
UαA

αAn1
E − ρ

c4
Uα UβA

αβAn1
E

)
λAn1

hµδ g(1)µ =
3

ρ c4θ1,2
Uα h

δ
β

N∑
n1=2

A
αβAn1
E λAn1

which fully determine g(1) and g(1)µ .

If we want their second order homogeneous parts, we have to take the derivatives of (32) with respect to
λAn2

. These derivatives are equivalent to

Uα
− kB

∫
ℜ3

∫ +∞

0
fE F

[
m

∂2 g

∂ λAn2
∂ λAn1

+ pµ
∂2 gµ

∂ λAn2
∂ λAn1

(
1 +

I
mc2

)
+

∂2∆χ

∂ λAn2
∂ λAn1

]
·

· pα φ(I) d I d P⃗ = −Uα

∫
ℜ3

∫ +∞

0
fE

∂ F

∂ λAn2

∂ F

∂ λAn1

pα φ(I) d I d P⃗ ,

Uα
− kB

∫
ℜ3

∫ +∞

0
fE F

[
m

∂2 g

∂ λAn2
∂ λAn1

+ pµ
∂2 gµ

∂ λAn2
∂ λAn1

(
1 +

I
mc2

)
+

∂2∆χ

∂ λAn2
∂ λAn1

]
·

· pα pβ
(
1 +

I
mc2

)
φ(I) d I d P⃗ =

= −Uα

∫
ℜ3

∫ +∞

0
fE

∂ F

∂ λAn2

∂ F

∂ λAn1

pα pβ
(
1 +

I
mc2

)
φ(I) d I d P⃗

If we calculate these equations at equilibrium, contract the result with 1
2 λAn2

λAn1
and take the sum for

n1, n2 = 2, · · · , N they give a system like (33), but with g(2) and g(2)µ instead of g(1) and g(1)µ in the left
hand sides, while in the right hand sides there are known functions which include polynomials in g(1) and g(1)µ

(already known). Therefore, by proceeding as we have done for (33), we fully determine g(2) and g(2)µ .
It is obvious that, by taking the higher order derivatives of (32) and proceeding in the same way, we obtain g(h)

and g(h)µ ∀h. This completes the proof that (10) jointly with gE = 0, gEµ = 0 give one and only one solution.
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