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Abstract

It is well known in literature a relativistic model for polyatomic gases, with an
arbitrary but fixed number of moments, whose balance equations have the symmetric
hyperbolic form in their left hand sides because the tensors derivated with respect to xα

are gradients of a 4-potential. Here the symmetric form and a 4-potential is obtained
also for their right hand sides, i.e., the production terms. Moreover, this fact will allow
to prove the H-theorem up to whatever order, while in other articles present in literature
this result was achieved only up to second order with respect to equilibrium. These
results are here obtained whether following the Eckart approach or the Landau-Lifshitz
one.

1 Introduction

The most diffused classical approaches to model a dissipative relativistic gas are those
of Eckart [1] and Landau-Lifshitz [2]. In [3] it has been proved that the two approaches
are equivalent; they differ only for a different definition of the deviations from equi-
librium and consequent expansion performed to obtain a linear model. We will prove
here that, if these expansions would be done up to whatever order, the two approaches
would give the same result. These expansions are used to do a transformation of the
independent variables from apparently anonimous Lagrange Multipliers to variables
which have an immediate physical meaning. However this is just a stylistic issue, as
in elementary geometry the algebraic expression of a surface isn’t more significant of
its parametric expression which uses ”anonimous” parameters. So, before to convert
the Lagrange Multipliers to the other variables, the two approaches are the same. The
Landau-Lifshitz approach has the advantage to obtain immediately a zero production
of mass and of momentum-energy; here we will see that it satisfies the H-theorem up to
whatever order. We will see that the same result can be obtained also with the Eckart
approach. Regarding the hyperboliciy, it has already been proved that it holds up tp
whatever order if the Lagrange Multipliers are used as independent variables ([4], [5]).
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Whatever restriction on the so called hyperbolicity region is due to the low degree of
approximation which is used for the above unnecessary change of variables. As a con-
firmation of this fact we see that Profs. Brini and Ruggeri implemented the articles [6],
[7] by considering a better approximation (The second order one) in [8] and obtained
a bigger hyperbolicity zone. This zone would cover all the set of possible values of
independent variables if no approximation was used; this is not possible for calculations
difficulties, but we cannot expect nature to bow to our mathematical difficulties.
Other doubts about the validity of Extended Thermodinamics with many moments
arose following Struchtrup’s articles [9], [10] and similar, which studied a transition to
Ordinary Thermodynamics and found some weak points. But Extended Thermody-
namics arose exactly to overcome the problems of Ordinary Thermodynamics, such as
the parabolic equations and the propagation waves with infinite speeds; so it makes
no sense to test a better theory through the worse theory that she passed. Moreover,
Struchtrup too uses approximations around equilibrium and it makes no sense to in-
crease the number of moments without increasing the order of approximations around
equilibrium. Finally, the methods used for the transition to Ordinary Thermodynamic
are mathematically well defined, but there is nothing physical which ensures that the
result of these methods really lead to Ordinary Thermodynamics; this doubt is rein-
forced by the fact the results for bulk viscosity, heat conductivity and shear viscosity
are different depending on wheter the Chapman-Enskog Method or the Maxwellian
Iteration are used (in this latter case it even depends on the number N of moments
being used). This is proved in [11]. So we don’t take into account these non-existing
weakness in the sequel.
The starting point to obtain the balance equations is the BoltzmannChernikov equation

pα ∂α f = Q , (1)

where f is the distribution function and Q the production term. The expression of the
first one of these was found in [12], [5], [13] and reads

f = e
−1− χ

kB , χ =
N∑
n=0

1

mn−1
λα1α2···αnp

α1pα2 · · · pαn
(

1 +
I
mc2

)n
, (2)

where kB is the Boltzmann constant, m is the particle mass, N denotes the number of
moments which is used, λα1α2···αn are the Lagrange multipliers, pα is the 4-momentum
of a particle (satisfying the relation pα pα = m2c2), I is the internal energy of a particle
due to its internal modes (rotations and vibrations).
Regarding the production term Q, if we adopt the Landau-Liftschiz approach, it has
the form

Q = − 1

c2τ
ULα p

α (f − feq.) , (3)

where τ is a relaxation time and ULα is the Landau-Lifshitz 4-velocity whose physical
meaning can be found in [15, 16]. We will see here that it generates an expression valid
also for the Eckart approach. In particular, we will see that, with the Landau-Liftschiz
approach, the balance equations take the form

∂α
∂ h′α

∂ λ
= 0 , ∂α

∂ h′α

∂ λβ
= 0 , ∂α

∂ h′α

∂ λβ1···βn
=
Uα
c τ

∂ Qα

∂ λβ1···βn
for n ≥ 2 , (4)
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where the gradient of a 4-potential is present both in the left hand sides (here the 4-
potential is h′α) than in the right hand sides (here the 4-potential is Qα). A less elegant
form, but with the same properties, will be obtained by following the Eckart approach
and it reads:

∂α
∂ h′α

∂ λβ1···βn
=
Uα
c τ

(
∂ Q̃α

∂ λ

∂ g

∂ λβ1···βn
+
∂ Q̃α

∂ λµ

∂ gµ
∂ λβ1···βn

+
∂ Q̃α

∂ λβ1···βn

)
for n ≥ 2 , (5)

where the 4-potential in the right hand side is Q̃α while g and gµ are known functions
which will be presented below. The plan of this article is the following: In the next
section we will see the expressions at equilibrium which is the same for both approaches.
In sect. 3 we will see the balance equations outside equilibrium by separating the two
approaches into 2 subsections; the above expressions (4) and (5) will be found and
the H-theorem will be proved for them up to whatever order with respect equilibrium
(obviously, refraining from making approximations).
In sect. 4 a transformation wil be found which allows to obtain the variables of the
Landau-Liftschiz approach in terms of those in Eckart approach. Obviously, the same
transformation can be done in the inverse direction but we will refrain to do it for
the sake of brevity. Approximations will be used, up to first order with respect to
equilibrium, only in its subsection 1 to see how previously result in literature can be
recovered from the present one. In its subsection 2, approximations will be used up to
second order only to show that the results previously obtained in literature don’t hold
at any order.

2 The model for relativistic polyatomic gas at

equilibrium

At equilibrium the Landau-Liftschiz and the Eckart approach give the same expressions.
In particular we have the balance equations

∂α V
α
E = 0 , ∂α T

αβ
E = 0 , where V α

E = ρUα , TαβE =
e

c2
UαUβ + p hαβ ,

Uα U
α = c2 , hαβ = −gαβ +

UαUβ

c2
(The projector into the subspace orthogonal toUα) .

If we want to find an approach which holds for whatever type of gas, we can introduce
the 4-potential

h′α = − 4πm3c5 h0

(
λE , γ

) λαE
γ
, where γ =

mc

kB

√
λαE λ

E
α → λαE λ

E
α =

(
kBγ

mc

)2

.

(The constant coefficients have been introduced for an easier comparison with expres-
sions previously known in literature). It follows

V α
E =

∂ h′α

∂ λE
= − 4πm3c5 ∂ h0

∂ λE

λαE
γ
, TαβE =

∂ h′α

∂ λEβ
= − 4πm3c5

(
h0

γ
hαβ +

∂ h0

∂ γ

λαE λ
β
E

λµE λ
E
µ

)
.
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As consequence of these results we have

ρ = − 4 kB πm
2c3 ∂ h0

∂ λE
, Uα =

mc2

kB

λαE
γ
, p = 4πm3c5 h0

γ
, e = − 4πm3c5 ∂ h0

∂ γ
. (6)

If we know the constitutive function e = e(ρ , γ), then (6)4 becomes

e

(
− 4 kB πm

2c3 ∂ h0

∂ λE
, γ

)
= − 4πm3c5 ∂ h0

∂ γ
,

which is a differential equation from which to deduce h0. For example, if e
ρ c2

= ε(γ)

and we define η(γ) from η′(γ) = ε(γ), this equation becomes ∂ h0
∂ γ −

kB
m η′ ∂ h0

∂ λE
= 0. By

considering h0 a composite function of H0(X , Y ) and of X = λE + kB
m η(γ), Y = γ,

this differential equation becomes ∂ H0
∂ Y = 0 so that the general solution is

h0 = H0

(
λE + kB

m η(γ)
)

for whatever single variable function H0. A further subcase is

that when

ε =
e

ρ c2
=

∫ +∞
0 J22 (γ∗)

(
1 + I

mc2

)
ϕ(I) d I∫ +∞

0 J21 (γ∗)ϕ(I) d I
→ η(γ) = − ln

∫ +∞

0
J21 (γ∗)ϕ(I) d I .

By taking H0(X) = e
−1−mX

kB we find h0 = e
−1−mλE

kB

∫ +∞
0 J21 (γ∗)ϕ(I) d I and (6)1,3

become

ρ = 4πm3c3 e
−1−mλE

kB

∫ +∞

0
J21 (γ∗)ϕ(I) d I , p

ρ
=
c2

γ
,

as in eqs. (26) and (41) of [12]. For the sake of simplicity, we will use in the sequel this
simpler expression.

3 The dissipative case and the production term

3.1 The Eckart approach

In [13], by multiplying eq. (1) with c
mn−1 p

α1pα2 · · · pαn
(
1 + I

mc2

)n
and integrating in

d I d ~P , the balance equations for this case have been found

∂αA
αα1···αn = Iα1···αn , for n = 0 , 1 , · · · , N . (7)

where

Aαα1···αn =
∂ h′α

∂ λα1···αn
, h′α = −kB c

∫
<3

∫ +∞

0
f pα ϕ(I) d I d ~P ,

Iα1···αn =
c

mn−1

∫
<3

∫ +∞

0
Qpα1pα2 · · · pαn

(
1 +

I
mc2

)n
ϕ(I) d I d ~P .

(8)

Hence the left hand side of the balance equation (7) takes the elegant expression
∂α

∂ h′α

∂ λα1···αn
. We will show now that also for the right hand side we can obtain a

similar expression Iα1···αn = Uα
c τ

∂ Qα

∂ λβ1···βn
with Qα which will be found later and τ a
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relaxation time. To this end we need to know the production term Q. Its expression
proposed in [14] was an approximated one and, in fact, it gave an entropy production σ
which was non negative only up to second order with respect to equilibrium. To obtain
σ ≥ 0 up to whatever order, we note firstly that, for every expressions of the functions
g (λα1α2···αn), gµ (λα1α2···αn) with n ≥ 2, we can define λE , λEµ from

λ = λE + g (λα1α2···αn) , λµ = λEµ + gµ (λα1α2···αn) . (9)

This can be also considered as a change of independent variables from λ, λµ, λα1α2···αn
to λE , λEµ , λα1α2···αn for n ≥ 2. We choose here g (λα1α2···αn), gµ (λα1α2···αn) the solution

of the conditions gE = 0, gEµ = 0 and of

Uα

∫
<3

∫ +∞

0
fE

(
e
−1
kB

[
mg+pµgµ

(
1+ I

mc2

)
+∆χ

]
− 1

)
pα ϕ(I) d I d ~P = 0 ,

Uα

∫
<3

∫ +∞

0
fE

(
e
−1
kB

[
mg+pµgµ

(
1+ I

mc2

)
+∆χ

]
− 1

)
pα pβ

(
1 +

I
mc2

)
ϕ(I) d I d ~P = 0 ,

(10)

with ∆χ =
∑N

n=2
1

mn−1 λα1α2···αnp
α1pα2 · · · pαn

(
1 + I

mc2

)n
. We will prove in the ap-

pendix that this problem gives one and only one solution. After that, we propose for
Q the following expression

Q = − Uαp
α

c2τ
fE

(
e
−1
kB

[
mg+pµgµ

(
1+ I

mc2

)]
e
−∆χ
kB − 1

)
. (11)

We note that, with this expression of Q we have QE = 0 and (8)3 gives I = 0, Iα = 0
automatically (Thanks to (10)) so that the conservation laws of mass and of momentum-
energy are satisfied up to whatever order; moreover, it follows that

Iα1···αn =
Uα
c τ

∂ Qα

∂ λα1α2···αn
, with Qα = g

ρ

c
Uα +

e

c
(Uµgµ)Uα+

+ kB

∫
<3

∫ +∞

0
fE

(
e
−1
kB

[
mg+pµgµ

(
1+ I

mc2

)
+∆χ

]
+

∆χ

kB

)
pα ϕ(I) d I d ~P .

(12)

(Note that ρ, Uα and the energy e depend on λE , λEµ and not on λα1α2···αn for n ≥ 2).
To prove the previous result, we can calculate

∂ Qα

∂ λα1α2···αn
=
ρ

c
Uα

∂ g

∂ λα1···αn
+
e

c
Uµ Uα

∂ gµ
∂ λα1···αn

−∫
<3

∫ +∞

0
fE e

−1
kB

[
mg+pµgµ

(
1+ I

mc2

)
+∆χ

] [
m

∂ g

∂ λα1α2···αn
+ pµ

∂ gµ
∂ λα1···αn

(
1 +

I
mc2

)]
pα·

· ϕ(I) d I d ~P −
∫
<3

∫ +∞

0
fE

(
e
−1
kB

[
mg+pµgµ

(
1+ I

mc2

)
+∆χ

]
− 1

)
∂∆χ

∂ λα1···αn
pα ϕ(I) d I d ~P .
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by contracting with Uα
c τ we obtain

Uα
c τ

∂ Qα

∂ λα1α2···αn
=

=
1

c2 τ

∂ g

∂ λα1···αn

(
ρ c2 − Uαmc

∫
<3

∫ +∞

0
fE e

−1
kB

[
mg+pµgµ

(
1+ I

mc2

)
+∆χ

]
pα ϕ(I) d I d ~P

)
+

+
1

c2 τ

∂ gµ
∂ λα1···αn

(
eUµ − Uαc

∫
<3

∫ +∞

0
fE e

−1
kB

[
mg+pµgµ

(
1+ I

mc2

)
+∆χ

]
pµ ·

·
(

1 +
I
mc2

)
pαϕ(I) d I d ~P

)
+ c

∫
<3

∫ +∞

0
Q

∂∆χ

∂ λα1···αn
ϕ(I) d I d ~P = Iα1···αn ,

because the coefficients of ∂ g
∂ λα1···αn

and of
∂ gµ

∂ λα1···αn
are identically zero for (10). In this

way the proof of (12) is completed. Hence the balance equations take the elegant form
(4) where the gradient form with respect to λβ1···βn is present both in the left and in the
right hand side. Obviously, there is in (4) the drawback that the left hand sides uses the
variables λ, λα, λα1···αn while the right hand sides uses the variables λE , λEα , λα1···αn ;
however we can express Qα in terms of the old variables by substituting in it the inverse
transformation of (9). In this way Qα is the composite function of Q̃α (λ , λα , λα1···αn)
and of λ = λE + g, λα = λEα + gα, λα1···αn and (4)3 becomes (5) where the gradient
form appears also in the right hand side even if through 3 terms.
There remains to prove in this section the
H-Theorem: ” The entropy production σ =

∑N
n=2 I

β1···βnλβ1···βn is non negative and
is zero only at equilibrium”.
To prove it we calculate

σ = − Uα
c τ

∫
<3

∫ +∞

0
fE

(
e
−1
kB

[
mg+pµgµ

(
1+ I

mc2

)]
e
−∆χ
kB − 1

)
∆χpα ϕ(I) d I d ~P =

=
kBUα
c τ

∫
<3

∫ +∞

0
fE

(
− e

−1
kB

[
mg+pµgµ

(
1+ I

mc2

)]
e
−∆χ
kB + 1

)
pα +

+
1

kB

[
∆χ+mg + gµ p

µ

(
1 +

I
mc2

) ]
ϕ(I) d I d ~P .

(13)

Here the underlined terms give a zero contribute thanks to (10); they have been included
for convenience of calculations. In fact, in this way the function to be integrated has
the form

F (x) =
(
1 − e−x

)
x with x =

1

kB

[
∆χ+ mg + gµ p

µ

(
1 +

I
mc2

)]
and we have

F ′(x) = 1 + e−x(x− 1) , F ′′(x) = e−x(−x+ 2) , F ′(0) = 0 , lim
x→+∞

F ′(x) = 1 .

From these calculations we note that for x < 2 the function F ′(x) is increasing so that
it can be have only a root which is x = 0; for x ≥ 2 it is a decreasing function and
goes from 1 + e−2 to 1 so that F ′(x) > 0 for x ≥ 2. It follows that the function F (x)
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is decreasing for x < 0 and increasing for x > 0; therefore it has a minimum value in
x = 0. Since g(0) = 0, it follows that g(0) > 0 ∀ x 6= 0, as we wanted to prove.
In order to compare the present results with those of [14], we conclude this subsec-
tion by seeing its implication on the linear expressions. At first order with respect to
equilibrium, eqs. (10) become

ρ c2g(1) + e g(1)
µ Uµ + Uα

N∑
n=2

Aαα1···αn
E λα1···αn = 0 ,

e Uβg(1) + UαA
µαβ
E g(1)

µ + Uα

N∑
n=2

Aαβα1···αn
E λα1···αn = 0 ,

(14)

where g(1) and g
(1)
µ denote the first order terms of g and gµ respectively. But in the

Eckart approach we have also the following conditions (15)1,2:

V α − V α
E = 0 , UαUβ

(
Tαβ − TαβE

)
= 0 ,

hδαUβ

(
Tαβ − TαβE

)
= − qδ → Uβ

(
Tαβ − TαβE

)
= qα ,

(15)

where (15)3 isn’t a condition but only the definition of the heat flux qα; moreover,
(15)2,3 are consequences of (15)4 and of Uα q

α = 0. The conditions (15)1,4 at first order
with respect to equilibrium become

ρUα
(
λ− λE

)(1)
+
( e
c2
UαUµ + phαµ

) (
λµ − λEµ

)(1)
+

N∑
n=2

Aαα1···αn
E λα1···αn = 0 ,

e Uα
(
λ− λE

)(1)
+ Uβ A

αβµ
E

(
λµ − λEµ

)(1)
+ Uβ

N∑
n=2

Aαβα1···αn
E λα1···αn = − kB

m
qα .

(16)

We can desume from these equations
∑N

n=2A
αα1···αn
E λα1···αn and Uβ

∑N
n=2A

αβα1···αn
E λα1···αn ;

by substituting them in (14) this equation becomes

ρ c2
[
g(1) −

(
λ− λE

)(1)
]

+ e
[
g(1)
µ −

(
λµ − λEµ

)(1)
]
Uµ = 0 ,

e Uβ
[
g(1) −

(
λ− λE

)(1)
]

+ UαA
µαβ
E

[
g(1)
µ −

(
λµ − λEµ

)(1)
]
− kB

m
qβ = 0 .

(17)

Now eq. (17)1, (17)2 contracted with Uβ and (17)2 contracted with hδβ give

g(1) =
(
λ− λE

)(1)
, g(1)

µ Uµ =
(
λµ − λEµ

)(1)
Uµ ,

hµδ
[
g(1)
µ −

(
λµ − λEµ

)(1)
]

=
3

ρc4θ1,2

kB
m

qδ ,
(18)

where eq. (14) of [13] has been used. Now (11) can be written as

Q = − Uαp
α

c2τ
fE

[
f

fE
− 1 +

f

fE

(
e
−1
kB

[
m (g−λ+λE)+pµ(gµ−λµ+λEµ )

(
1+ I

mc2

)]
− 1

)]
.
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Here we can linearize the term f
fE

(
e
−1
kB

[
m (g−λ+λE)+pµ(gµ−λµ+λEµ )

(
1+ I

mc2

)]
− 1

)
, i.e.,

substitute it with(
f

fE

)(0)(
e
−1
kB

[
m (g−λ+λE)+pµ(gµ−λµ+λEµ )

(
1+ I

mc2

)]
− 1

)(1)

+

+

(
f

fE

)(1)(
e
−1
kB

[
m (g−λ+λE)+pµ(gµ−λµ+λEµ )

(
1+ I

mc2

)]
− 1

)(0)

=

=
−1

kB

[
m
(
g − λ+ λE

)(1)
+ pµ

(
gµ − λµ + λEµ

)(1)
(

1 +
I
mc2

)]
.

Moreover, we use the result (18) and find

Q = − Uαp
α

c2τ
fE

[
f

fE
− 1 + pµ qµ

3

mρc4θ1,2

(
1 +

I
mc2

)]
,

which is the expression found in eq. (43) of [13].

3.2 The Landau-Liftschiz approach

We note that all the considerations in the previous subsection, up to its equation (4),
can be repeated also in the present approach and eqs. (10) simply means that

Uα
(
V α − V α

eq

)
= 0 , Uα

(
Tαβ − Tαβeq

)
= 0 , (19)

because by using (9), we have

fE

(
e
−1
kB

[
mg+pµgµ

(
1+ I

mc2

)
+∆χ

]
− 1

)
= f − fE .

Moreover, the expression (11) of the production term can be written simply as

Q =
−Uα pα

c2τ
(f − fE) .

From this viewpoint it seems that the definition of deviations from equilibrium, which is
present in the Landau-Liftschiz approach, was purposely made to automatically achieve
zero mass production and zero momentum-energy production:

I = − ULα
c2τ

(V α − V α
E ) = 0 , Iβ = − ULα

c2τ

(
Tαβ − TαβE

)
= 0 ,

So also in this approach we obtain the equation (4), where the gradient form with
respect to λβ1···βn is present both in the left and in the right hand side. Moreover, we
don’t have here the drawback which was present in (4) which forced us to transform
it in the less elegant form (5). It is true that also in the present approach the left
hand sides of (4) uses the variables λ, λα, λα1···αn while the right hand sides uses the
variables λE , λEα , λα1···αn ; but, instead of expressing Qα in terms of the old variables,
we can express the left hand sides (i.e., h′α) in terms of the new variables. Since an
invertible change of independent variables maintains the hyperbolicity requirement, as
long as this change of independent variables is not done in an approximated way, this
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requirement is here preserved. Also the proof of the H-Theorem which is present in
the previous subsection, between eqs. (5) and (14) still holds also in the present case.
We see also that the expression ofQ proposed in eq. (7) of [4] (with a1 = 0, a2 = 1/τ) for
the Eckart approach is the same of the present one (11), except to identify the functions
ψ and ψµ of [4] respectively with the funtions g and gµ which are here present. However,
they were introduced in [4] ad hoc, as a mathematical tool; instead here we have seen
that they come from trying to adapt the Eckart approach to the Landau-Liftschiz
approach.

4 Determination of qαL and P αβ in terms of the

variables in the Eckart approach

Both the approaches are the same at equilibrium so that they give the same values for
ρ, Uα, e and p; in particular they give

ρUα =
∂ h′αE
∂ λE

, TαβE =
e

c2
UαUβ + p hαβ =

∂ h′αE
∂ λEβ

with

h′αE = − kBc
∫
<3

∫ +∞

0
fE p

α ϕ(I) d I d ~P , fE = e
−1− 1

kB

[
mλE+λEµ p

µ
(

1+ I
mc2

)]
.

Outside equilibrium, with the Eckart approach we have f = fEk with

fEk = fE e
− 1
kB

[
m (λ−λE)+(λµ−λEµ )pµ

(
1+ I

mc2

)
+ ∆χ

]
,

∆χ =
N∑
n=2

1

mn−1
λα1···αnp

α1 · · · pαn
(

1 +
I
mc2

)n
,

while with the Landau-Liftschiz approach we have f = fL with

fL = fE e
− 1
kB

[
mg+gµpµ

(
1+ I

mc2

)
+ ∆χ

]
→

fL

fEk
= e
− 1
kB

[
m (g−λ+λE)+(gµ−λµ +λEµ )pµ

(
1+ I

mc2

)]
,

fL − fE
fE

=
fEk

fE

(
e
− 1
kB

[
m (g−λ+λE)+(gµ−λµ +λEµ )pµ

(
1+ I

mc2

)]
− 1

)
+
fEk

fE
− 1 .

(20)

Now qαL and Pαβ are defined by qαL = V α
L − ρUαL and Pαβ = TαβL − TαβE so that we

have the system

qαL = mc

∫
<3

∫ +∞

0
fE

fL − fE
fE

pα ϕ(I) d I d ~P ,

Pαβ = c

∫
<3

∫ +∞

0
fE

fL − fE
fE

pα pβ
(

1 +
I
mc2

)
ϕ(I) d I d ~P ,

Uα q
α
L = 0 , Uα P

αβ = 0 ,

(21)

9



for the determination of g − λ + λE , gµ − λµ + λEµ , qαL, Pαβ. To this end, from (20)3

we have that fL−fE
fE

at the order zero is zero, while at the orders 1 and 2 is respectively
given by(
fL − fE
fE

)(1)

=

(
fEk

fE

)(0) (
e
− 1
kB

[
m (g−λ+λE)+(gµ−λµ +λEµ )pµ

(
1+ I

mc2

)]
− 1

)(1)

+

+

(
fEk

fE

)(1) (
e
− 1
kB

[
m (g−λ+λE)+(gµ−λµ +λEµ )pµ

(
1+ I

mc2

)]
− 1

)(0)

+

(
fEk

fE
− 1

)(1)

=

= − 1

kB

[
m
(
g − λ + λE

)(1)
+
(
gµ − λµ + λEµ

)(1)
pµ
(

1 +
I
mc2

)]
+

(
fEk

fE
− 1

)(1)

,

(22)

(
fL − fE
fE

)(2)

=

(
fEk

fE

)(0) (
e
− 1
kB

[
m (g−λ+λE)+(gµ−λµ +λEµ )pµ

(
1+ I

mc2

)]
− 1

)(2)

+

+

(
fEk

fE

)(1) (
e
− 1
kB

[
m (g−λ+λE)+(gµ−λµ +λEµ )pµ

(
1+ I

mc2

)]
− 1

)(1)

+

+

(
fEk

fE

)(2) (
e
− 1
kB

[
m (g−λ+λE)+(gµ−λµ +λEµ )pµ

(
1+ I

mc2

)]
− 1

)(0)

+

(
fEk

fE
− 1

)(2)

.

where the underlined terms are zero.

4.1 The expressions of qαL and P αβ at first order with re-
spect to equilibrium

By using the above passages we see that the system (21) at first order becomes

(qαL)(1) = mc

∫
<3

∫ +∞

0
fE

(
fL − fE
fE

)(1)

pα ϕ(I) d I d ~P =

= − m

kB

(
g − λ + λE

)(1)
ρUα − m

kB

(
gµ − λµ + λEµ

)(1)
TαµE + (V α

Ek − V α
E )(1) ,

(
Pαβ

)(1)
= c

∫
<3

∫ +∞

0
fE

(
fL − fE
fE

)(1)

pα pβ
(

1 +
I
mc2

)
ϕ(I) d I d ~P =

= − m

kB

(
g − λ + λE

)(1)
TαβE − m

kB

(
gµ − λµ + λEµ

)(1)
AαβµE +

(
TαβEk − T

αβ
E

)(1)
,

Uα (qαL)(1) = 0 , Uα

(
Pαβ

)(1)
= 0 .

(23)

Here too the underlined term is zero, while

TαβE =
e

c2
UαUβ + p hαβ , AαβµE = ρ θ0,2U

αUβUµ + ρ c2θ1,2U
(αhβµ) ,(

TαβEk − T
αβ
E

)(1)
= π hαβ +

2

c2
U (αqβ) + t<αβ> ,

10



as it can be seen from [13], in particular from its eq. (14). By contracting eq. (23)1

with Uα, eq. (23)2 with UαUβ and by taking into account (23)2,3 we obtain(
g − λ + λE

)(1)
= 0 , Uµ

(
gµ − λµ + λEµ

)(1)
= 0 . (24)

By contracting eq. (23)2 with Uαh
δ
β and by taking into account (23)3 we obtain

(
gδ − λδ + λEδ

)(1)
= − 3

ρ c4θ1,2

kB
m

qδ . (25)

There remains to contract eq. (23)1 with hδα and eq. (23)2 with hδαh
ψ
β ; by using eqs.

(24), (25) the result is(
qδL

)(1)
= − 3 p

ρ c4θ1,2
qδ ,

(
P δψ

)(1)
= π hδψ + t<δψ> . (26)

Regarding the first term of this equation we note that it can be rewritten by using the
recurrence relations (16) and eqs. (12)1,2 of [13] as(

qδL

)(1)
= − ρ

e+ p
qδ ,

which is the same value found in (7)1 of [3] which concerned an approach with a linear

deviation from equilibrium. Since we will see in the next subsection that
(
qδL
)(2) 6= 0,

the expression (7)1 of [3] cannot be assumed to hold up to whatever order with respect
to equilibrium.

4.2 The expressions of qαL and P αβ at second order with
respect to equilibrium

We have to consider eq. (22)2; to this end, we need(
e
− 1
kB

[
m (g−λ+λE)+(gµ−λµ +λEµ )pµ

(
1+ I

mc2

)]
− 1

)(2)

and(
e
− 1
kB

[
m (g−λ+λE)+(gµ−λµ +λEµ )pµ

(
1+ I

mc2

)]
− 1

)(1)

.

Since the Taylor’s expansion of the function ex around x = 0 and up to second order is
1 + x+ x2

2 , we have(
e
− 1
kB

[
m (g−λ+λE)+(gµ−λµ +λEµ )pµ

(
1+ I

mc2

)]
− 1

)(2)

= − m

kB

(
g − λ + λE

)(2) −

1

kB

[(
gµ − λµ + λEµ

)(2)
pµ
(

1 +
I
mc2

)]
+

1

2

(
m
(
g − λ + λE

)(1)

kB

)2

+

+
1

(kB)2

[
m
(
g − λ + λE

)(1) (
gµ − λµ + λEµ

)(1)
pµ
(

1 +
I
mc2

)]
+

1

2 (kB)2

[(
gµ − λµ + λEµ

)(1)
pµ
(

1 +
I
mc2

)][(
gν − λν + λEν

)(1)
pν
(

1 +
I
mc2

)]
,

11



(
e
− 1
kB

[
m (g−λ+λE)+(gµ−λµ +λEµ )pµ

(
1+ I

mc2

)]
− 1

)(1)

= − m

kB

(
g − λ + λE

)(1)−

1

kB

[(
gµ − λµ + λEµ

)(1)
pµ
(

1 +
I
mc2

)]
.

By using (24) and (25), we obtain(
e
− 1
kB

[
m (g−λ+λE)+(gµ−λµ +λEµ )pµ

(
1+ I

mc2

)]
− 1

)(2)

= − m

kB

(
g − λ + λE

)(2) −

1

kB

[(
gµ − λµ + λEµ

)(2)
pµ
(

1 +
I
mc2

)]
+

1

2

(
3

ρ c4θ1,2

1

m

)2

(qµp
µ)2

(
1 +

I
mc2

)2

,

(
e
− 1
kB

[
m (g−λ+λE)+(gµ−λµ +λEµ )pµ

(
1+ I

mc2

)]
− 1

)(1)

=
3

ρ c4θ1,2

1

m
qµp

µ

(
1 +

I
mc2

)
.

By using these expressions in (22)2 it becomes(
fL − fE
fE

)(2)

= − m

kB

(
g − λ + λE

)(2) −

1

kB

[(
gµ − λµ + λEµ

)(2)
pµ
(

1 +
I
mc2

)]
+

1

2

(
3

ρ c4θ1,2

1

m

)2

(qµp
µ)2

(
1 +

I
mc2

)2

+

+

(
fEk

fE

)(1)
3

ρ c4θ1,2

1

m
qµp

µ

(
1 +

I
mc2

)
+

(
fEk

fE
− 1

)(2)

.

We can now substitute this result in (21) so that the homogeneous second order part
of this system is

(qαL)(2) = mc

∫
<3

∫ +∞

0
fE

(
fL − fE
fE

)(2)

pα ϕ(I) d I d ~P =

= − m

kB

(
g − λ + λE

)(2)
ρUα − m

kB

(
gµ − λµ + λEµ

)(2)
TαµE +

+
1

2

(
3

ρ c4θ1,2

)2

AαµνE qµ qν +
3

ρ c4θ1,2
qµ
(
TαµEk

)(1)
+ (V α

Ek)
(2) =

= − m

kB

(
g − λ + λE

)(2)
ρUα − m

kB

(
gµ − λµ + λEµ

)(2)
TαµE +

+
3

ρ c4θ1,2
qµ

(
π hαµ +

1

2 c2
Uαqµ + t<αµ>

)
,

(27)

(
Pαβ

)(2)
= c

∫
<3

∫ +∞

0
fE

fL − fE
fE

pα pβ
(

1 +
I
mc2

)
pµ
(

1 +
I
mc2

)
ϕ(I) d I d ~P =

= − m

kB

(
g − λ + λE

)(2)
TαβE − m

kB

(
gµ − λµ + λEµ

)(2)
AαβµE +

+
1

2

(
3

ρ c4θ1,2

)2

AαβµνE qµ qν +
3

ρ c4θ1,2
qµ

(
AαβµEk

)(1)
+
(
TαβEk

)(2)
,

Uα (qαL)(2) = 0 , Uα

(
Pαβ

)(2)
= 0 ,

12



where the underlined terms are zero, while

AαβµνE = ρ θ0,3 U
αUβUµUν + ρ c2θ1,3 U

(αUβhµν) + ρ c4θ2,3 h
(αβhµν) ,(

AαβµEk

)(1)
=

1

4c4
∆UαUβUµ −

(
3

4c2

N∆

D4
∆ + 3

NΠ

D4
Π

)
h(αβUµ)

+
3

c2

N3

D3
q(αUβUµ) +

3

5

N31

D3
h(αβqµ) + 3C5t

(<αβ>3Uµ) ,

as it can be seen from eqs. (14) and (35) of [13] (∆ is the 15th variable). By contracting

eq. (27)1 with Uα
c2

, eq. (27)2 with
UαUβ
c4

and by taking into account (27)3,4 we obtain

0 = − m

kB
ρ
(
g − λ + λE

)(2) − m

kB

e

c2
Uµ

(
gµ − λµ + λEµ

)(2)
+

3

2 ρ c6θ1,2
qµ q

µ ,

0 = − m

kB

e

c2

(
g − λ + λE

)(2) − m

kB
ρ θ0,2 U

µ
(
gµ − λµ + λEµ

)(2)
+

+

(
− 3

4

θ1,3

ρ c6 (θ1,2)2 +
3

ρ c6θ1,2

N3

D3

)
qµqµ .

This system fully determine
(
g − λ + λE

)(2)
and Uµ

(
gµ − λµ + λEµ

)(2)
.

By contracting eq. (27)2 with Uαh
δ
β and by taking into account (27)3,4 we obtain

hµδ
(
gµ − λµ + λEµ

)(2)
= − kB

m

9

ρ2 c8 (θ1,2)2 qµ

(
AαβµEk

)(1)
Uαh

δ
β =

=
kB
m

9

ρ2 c8 (θ1,2)2

[(
1

4

N∆

D4
∆ + c2 N

Π

D4
Π

)
qδ + C5 c

2 t<δµ>3 qµ

]
.

(28)

There remains to contract eq. (27)1 with hδα and eq. (27)2 with hδαh
ψ
β ; the result is

(
qδL

)(2)
= − mp

kB
hδµ

(
gµ − λµ + λEµ

)(2)
+

3

ρ c4θ1,2

(
−π qδ + t<δµ> qµ

)
, (29)

(
P δψ

)(2)
= − m

kB

[
p
(
g − λ + λE

)(2)
+

1

3
ρ c2θ1,2 U

µ
(
gµ − λµ + λEµ

)(2)
]
hδψ+

+
3

ρ c4 θ1,2

(
1

2

θ2,3

θ1,2
− 1

5

N31

D3

) (
2 qδ qψ − qµ qµ h

δψ
)
.

Obviously, here the above found expressions of
(
g − λ + λE

)(2)
, Uµ

(
gµ − λµ + λEµ

)(2)

and of hδµ
(
gµ − λµ + λEµ

)(2)
must be used.

Conclusions: We have obtained the gradient form of the balance equations
not only for their left hand sides, but also for their right hand sides; this result has been
obtained both with the Eckart approach and the Landau-Lifshitz one. In this way the
symmetric form and a 4-potential is also obtained for both sides. Moreover, this form
allowed to prove the hyperbolicity of the equations and the H-theorem up to whatever

13



order. We have also seen that the Eckart approach and the Landau-Lifshitz one are
equivalent if the Lagrange multipliers λα1···αn are taken as independent variables. The
difference comes only after a different definition of the deviations of λ − λE and of
λα − λEα ; in any case, there is an invertible transformation between their independent
variables.

A Appendix: Proof of the unicity of the solu-

tion of eqs. (10) and of gE = 0, gEµ = 0.

The equations (10) calculated at equilbrium are identically satisfied; so they are equiv-
alent to their derivatives with respect to λα1···αn1

(with n1 ≥ 2) which now we express,
by using a compact notation, as λAn1

. These derivatives are

Uα
− kB

∫
<3

∫ +∞

0
fE F

[
m

∂ g

∂ λAn1

+ pµ
∂ gµ
∂ λAn1

(
1 +

I
mc2

)
+

∂∆χ

∂ λAn1

]
pα ϕ(I) d I d ~P = 0 ,

Uα
− kB

∫
<3

∫ +∞

0
fE F

[
m

∂ g

∂ λAn1

+ pµ
∂ gµ
∂ λAn1

(
1 +

I
mc2

)
+

∂∆χ

∂ λAn1

]
pα pβ

(
1 +

I
mc2

)
·

· ϕ(I) d I d ~P = 0 , with F = e
−1
kB

[
mg+pµgµ

(
1+ I

mc2

)
+∆χ

]
,

(30)

which, calculated at equilibrium, give

− m

kB

[(
∂ g

∂ λAn1

)
E

Uα V
α
E +

(
∂ gµ
∂ λAn1

)
E

Uα T
αµ
E

]
=

m

kB
UαA

αAn1
E ,

− m

kB

[(
∂ g

∂ λAn1

)
E

Uα T
αβ
E +

(
∂ gµ
∂ λAn1

)
E

UαA
αβµ
E

]
=

m

kB
UαA

αβAn1
E .

By contracting these equations with λAn1
and taking the sum for n1 = 2, · · · , N they

become

g(1) Uα V
α
E + g(1)

µ Uα T
αµ
E = −

N∑
n1=2

UαA
αAn1
E λAn1

,

g(1) Uα T
αβ
E + g(1)

µ UαA
αβµ
E = −

N∑
n1=2

UαA
αβAn1
E λAn1

.

(31)

The first one of these equations, the second one contracted with Uβ and the second one
contracted with hδβ constitute a system by using also the expressions

V α
E = ρUα , TαµE =

e

c2
UαUµ + p hαµ , AαβµE = ρ θ0,2 U

αUβUµ + ρ c2θ1,2 U
(αhβµ) .
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This system has the unique solution

g(1) =

∣∣∣∣∣∣
ρ e

c2

e
c2

ρ θ0,2

∣∣∣∣∣∣
−1

N∑
n1=2

( e
c6
UαUβ A

αβAn1
E − ρ θ0,2 UαA

αAn1
E

)
λAn1

,

Uµ g(1)
µ =

∣∣∣∣∣∣
ρ e

c2

e
c2

ρ θ0,2

∣∣∣∣∣∣
−1

N∑
n1=2

( e
c4
UαA

αAn1
E − ρ

c4
Uα UβA

αβAn1
E

)
λAn1

,

hµδ g(1)
µ =

3

ρ c4θ1,2
Uα h

δ
β

N∑
n1=2

A
αβAn1
E λAn1

,

which fully determine g(1) and g
(1)
µ .

If we want their second order homogeneous parts, we have to take the derivatives of
(30) with respect to λAn2

. These derivatives are equivalent to

Uα
− kB

∫
<3

∫ +∞

0
fE F

[
m

∂2 g

∂ λAn2
∂ λAn1

+ pµ
∂2 gµ

∂ λAn2
∂ λAn1

(
1 +

I
mc2

)
+

∂2 ∆χ

∂ λAn2
∂ λAn1

]
·

· pα ϕ(I) d I d ~P = −Uα
∫
<3

∫ +∞

0
fE

∂ F

∂ λAn2

∂ F

∂ λAn1

pα ϕ(I) d I d ~P ,

Uα
− kB

∫
<3

∫ +∞

0
fE F

[
m

∂2 g

∂ λAn2
∂ λAn1

+ pµ
∂2 gµ

∂ λAn2
∂ λAn1

(
1 +

I
mc2

)
+

∂2 ∆χ

∂ λAn2
∂ λAn1

]
·

· pα pβ
(

1 +
I
mc2

)
ϕ(I) d I d ~P =

= −Uα
∫
<3

∫ +∞

0
fE

∂ F

∂ λAn2

∂ F

∂ λAn1

pα pβ
(

1 +
I
mc2

)
ϕ(I) d I d ~P .

If we calculate these equations at equilibrium, contract the result with 1
2 λAn2

λAn1
and

take the sum for n1, n2 = 2, · · · , N they give a system like (31), but with g(2) and g
(2)
µ

instead of g(1) and g
(1)
µ in the left hand sides, while in the right hand sides there are

known functions which include polynomials in g(1) and g
(1)
µ (already known). Therefore,

by proceeding as we have done for (31), we fully determine g(2) and g
(2)
µ .

It is obvious that, by taking the higher order derivatives of (30) and proceeding in the

same way, we obtain g(h) and g
(h)
µ ∀h. This completes the proof that (10) jointly with

gE = 0, gEµ = 0 give one and only one solution.
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