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Abstract: The main purpose of this paper is the construction an explicit formula for modified Hermit function
differentiation operational matrix and other new properties. Then an efficient approximate method is investigated for
treating quadratic optimal control problem with the aid of the derived operation matrix. The technique essentially based
on reducing the optimal problem indirectly to a system of linear algebraic equations in the expansion of unknown
coefficients. The obtained numerical results are compared with the exact one.
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1. Introduction
Spectral methods based on state vector

parameterization are one of the discritirazation methods
for approximate solution of differential equations,
integral equations, and optimal control problem[1-10]. The
subject of optimal control problems is an important part
of mathematics. Many practical computing techniques
have been presented in optimal control[11-18].

The current technique is based upon the expansion
of state variable in modified Hermite functions having
unknown coefficients. The proposed algorithm reduces
the quadratic optimal control problems into a system of
algebraic equations using indirect method.

The organization of the paper is: in the next section,
the definition of modified Hermite polynomials is
introduced and the discussion about the basic conversion
from power form to modified Hermite polynomials is
included. In section 3, the computational for operational
matrix of derivative is listed for modified Hermite
polynomials. An algorithm for treating quadratic optimal
control problem is proposed in section 4 depending on
differentiation operational matrix of derivative. Section 5

contains a test example while the conclusion is presented
in the last section followed by the description of the
numerical example.

2. Modified Hermite Polynomials
Modified Hermite polynomials ��� � are

important polynomials, defined as follows
��� � � ��

�
� ��

�
�

(1)

where �� � are nth Hermite polynomials, and can be
calculated by the following recurrence relation[14,15]
��th � � �� �� � � �����h �

(2)

3. New Differentiation Operational

Matrix for��� �
A new property of modified Hermite functions

has been derived in this section. The few modified
Hermite polynomials can be obtained using Eq. 1
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��h � � �
��� � � �� � h
��� � � �� � ��
��� � � �� � ��� t �
��� � � �� � hh�� t h�� (3)

Lemma (1)

The polynomials ��� � can be defined from the
following recurrence relation

���th � � � ��� � � �����h �

where ��h � � h and ��h � � �

the derivative of ��� � are,

�� �h � � h

�� �h � � h

�� �� � � ��

�� �� � � ��� � �

�� �� � � ��� � h�t

�� �� � � ��� � �h�� t h� (4)

New, the derivative �� �� � can be written in terms
of��� � ,

�� �h � � h

�� �h � � ��h �

�� �� � � ���h �

�� �� � � ���� �

�� �� � � ���� �

�� �� � � ���� �

In general

�� �� � � �����h � (5)

As a result the differentiation operational matrix for
��� � is given by

��� �

h ��� h � h
h h ��� � h
h h h ��� h
� � � �
h h h � ���

where the elements of the first row are zero,

��t �
� � � t
h ��䁒�䀀㌳��� (6)

1. The Proposed Algorithm
The spectral method with state vector

parameterization using modified Hermite polynomials
as basic functions are used to solve quadratic optimal
control problem,

minimize � � �
� ���� t ���� ���

(7)

subject to x� � Ax t Bu (8)

and � � � � (9)

where � � �� � ��� � � �� � ��� � � ��� � � �� ,
the matrix Q is � � � positive semi definite matrix
����� � h�and � is� �� positive definite matrix, i.e.,
���� 䁝 h unless ���� � h.

The algorithm is designed for solving Eqs. 7-9 and
can be summarized by the following steps:

Step1: Find the necessary condition for optimality.

�� � ��� h
�
���h��� (10)

� �� ��� � ���� (11)

� �� h
�
��h��� (12)

With the boundary conditions

� � � � (13)

� � � � (14)

Step 2: Approximate � � and � � by finite length
modified Hermite polynomials,

� � �h��� � � ����

Step 3: Construct the square system of algebraic
equations
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�� � �h����� (15)

�� � ������� (16)

By substituting Eqs. 15-16 into Eqs. 10-12, one can
obtain

�h����� � ��h �
h
�
���h���� ��

������� � � ���h � ���� ��

or

�h����� � �h�� (17)

������� � ���� (18)

where �h � ��h �
h
�
���h����

and �� �� ���h � ����

step 4: Approximate Equn. (13-14) using modified
Hermite polynomials, yields

� � � �h�� � � � (19)

and � � � ���� � � � (20)

step 5: Solve the system of algebraic Eqs. 17 to 20 to
find the entries of the two vectors �h and ��.

Step 6: Calculate the control variable from Eq 12.

Step 7: Evaluate the cost function

� �
�

�

�������h �� t ��������������

2. Numerical Example:

minimize � � h
h�� � ���

with the constrains

�h� � �� �h h � h �h h � h

��� � � �� h � h �� h free

The exact solution is

�h � � �� � ��� t � t h

�� � � ��� � �� t h

� � � � � � h h � � � h

and the value of the performance index is � � h�.

Step 1:

The necessary conditions for optimality will be:

�h� � ��

��� � �
h
�
��

�h� � h

��� �� �h

with the boundary conditions

�h h � h � �h h � h� �� h � h �� h � h

Step 2: approximate �h � and �� h using modified
Hermite polynomials with � � �

�h � � �h��h � t �h��h � t ����� �
t ����� �

�� � � �h��h � t �h��h � t ����� �
t ����� �

or

�h � �h�� and ����� � ����

where

�h � ��h �h �� ���

�� � ��h �h �� ���

and

�� � ���h ��h ��� �����

Now ����� and �h��� can be found as follows:

�� � �h� � �h�����

�h � � ��� � �������

where

��� �

h h h h
h h h h
h � h h
h h � h

Step 3: Approximate the boundary conditions
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�h h � h � �h��h h t �h��h h t ����� h
t ����� h � h

Therefore,

�h � �� � h

�h h � h � �h t �h � ��� � h

�� h � h � �h � ��� � h

�� h � h � �h t �h � ��� � h

Finally, the approximated results will be

�h � � �� � ��� t ��h � ��h

�� � � ��� � ��h t ��h

� � � ��h � ��h

and � � h� which is equal to the exact one.

4. Conclusion
In this work, a novel algorithm for solving quadratic

optimal control problem is suggested. The presentation
of the algorithm is essentially based on the proposed
operational matrix of derivative for modified Hermite
polynomials. The differentiation operational matrix is
used to convert the original problem into algebraic
equations and has the following advantages; first; all its
elements are integers and hence there is no truncation
error. Second, easy to construct because it has special
structure.
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