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Abstract: In this article, some new improvement for fifth order multistep method [1] is adopted with the idea of
homotopy perturbation procedure to reach the solution of nonlinear equations in minimum number of iterations.
Suggest way to identify a start system of the proposed method is also included within this work. The obtained results
are compared in terms of the iterations number and the application of the presented method based on studding several
examples.
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1. Introduction
It is well known that much class of problems are

formulated as nonlinear equations which appear in
different discipline of both pure and applied sciences as
well as in engineering applications[2-15]. For example
finding the true anomaly from mean anomaly value and
the eccentricity for a planet in an elliptical orbit around
the sun will lead to solve Kelper's equation, which has a
unique solution. Several numerical methods have been
derived for solving such equations because of its
importance in celestial mechanics[17-24]. In general, the
nonlinear equations f(t)=0 can be solved using several
approximate techniques, which have been proposed by
many authors[25-33]. Another important method for
treating the nonlinear equation is homotopy
method[34-36]. Attention is given to improve some
iterative methods for solving nonlinear equations based
on homotopy perturbation method. In this paper, an
improvement is suggest for solving nonlinear
equation based on the multistep method[1] and the
homotopy perturbation method. Some example are
solved to illustrate the efficiency of this method and a
comparison is made depends on the number of iterations.

2. The Method
The basic idea of linear homotopy is given in the

following definition.
Definition 1.1
Consider a non-linear algebraic equation � � � t ,

then convex homotopy for the function � �t� � � �
tth � � is

� �t� � h � � � � � � � � � t (1)

where � is an embedded parameter and � ϵ [0,1];
� � is the start system;
� � � � � is the target system;

� �tt � � � � � �th � � � � � � �
The basic ways to identify a start system � � of a

linear homotopy are
1. � � � � � �t,
� �t� � h � � � � � � � � � t� (2)
where is an initial approximation of Eq. 2
2. � � � � � � � �t t� �t� [ � � � � �t ]+
� � � � t (3)
3. � � � �� � �t � �t� � h � � ��� � �㐻 �
� � � � t (4)
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3. Results and Discussions
A. Algorithm 1

Step 1: Find the initial value �t t by setting � � �
�� � � � t→ �t�

Step 2: Evaluate y = � � � �
�� �

;

Step 3: Evaluate z= y � �� � �� �
����� � 㐻� � � � ��� �

Step 3: Evaluate new � � � �
�� � � � � � � �� �

����� � 㐻���� � � � � � ��� �

B. Algorithm
Step 1: Identify � � � � � � t
Step 2: Identify � � , such as � � � �� � �
where � is a any real number, and � be the highest

power of x or, � � be a part of � � with trivial
solution (s),

Step 3: Identify � � , such as � � � � � �t.
Step 4: Find the initial value �t t by setting � � �

�� � � � t→ �t�
Restart, �� � � � �� � �h� �㐻�� �� � � � �� � h;
�����\ � � �
�� �����\ � � �

Step 5: simplify � �t� � h � � ��� � �㐻 �
� � �

Such as,
��� � h� � � � � � � � � simplify � �t� �

Step 6: iterate � �t� � h � � ��� � �㐻 � � � �
where � � �tth� e.g . 0.2, 0.4, 0.6, 0.8, 1.0 by using

the (three steps in algorithm 1)
DH: = D(H); simplify (DH (�t�㐻㐻�

New t : = y → evalf � � � �t�
�� �t�

;

New : = � � \�h��

�� � �� �t� � �� �t �
����� �t � 㐻� � � �t� � ��� �t�

);

New: = � � \�h��

�� � �� � �t� � � �t� � ��� �t �
����� �t � 㐻���� �t� � � �t� � � ��� �t�

);

Step 7: simplify � �t� � h � � �� � �t㐻 � � � �
Such as,

��� � h� � � � � � � � simplify � �t� �
Step 8: iterate � �t� � h � � �� � �t㐻 � � � �
where � � �tth� e.g . 0.2, 0.4, 0.6, 0.8, 1.0 by using

the (three steps in algorithm 1)
DH: = D(H); simplify (DH (�t�㐻㐻�
New � � � � �t�

�� �t�
;

New � � y � �� �t� � �� �t �
����� �t � 㐻� �� �t� � ��� �t�

New � � y � �� � �t� � � �t� � ��� �t �
����� �t � 㐻���� �t� � � �t� � � ��� �t�

C. Numerical Examples and analysis
Three test examples are solved to illustrate the

efficiency of the multistep homotopy perturbation
method and the results are compared against the method
derived in [1]. The test examples will be

h � � � �3 – 2x-5
� � � � ��3 –� \�-h
� � � � �� +8� -9
The number of iterations to reach the solution with an

operated initial value �t against results presented in [1]
are listed in Table 1-Table 3 for the above three test
examples.

Function �� [1] root λ �� � ⦸ root �� �� root

� � � �3 � �� � � 1.709975946676697 6
2.0945

51481542
327

0.2 5 1.7878981
67258076

5 1.988508065502361

0.4 5 1.8655302
51588451

6 2.047919662442417

0.6 6 1.9426336
47840137

6 2.072621067850605

0.8 6 2.0190213
69504220

6 2.086086860148989

1 6 2.0945514
81542327

6 2.094551481542327

Table 1. Results for function � � � �3 � �� � �
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Function �� [1 ] root λ �� � ⦸ root �� �� root

� � � ��3 � �\� � h 1 6 0.8371771
30769307

0.2 5 0.936338813
941552

4 0.89726127
8095561

0.4 5 0.897758681
664413

6 0.86750147
2503153

0.6 6 0.871396981
307035

6 0.85251057
3002858

0.8 6 0.852056582
284315

6 0.84336625
1980199

1 6 0.837177130
769307

6 0.83717713
0769307

Table 2. Results for function � � � ��3 � �\� � h

Function �� [1 ] root λ �� � ⦸ root �� �� root

� � � �� � 8� � 9 3 5 1

0.2 5 2.304834939
252005

5 1.54983443
5270750

0.4 5 1.800000000
000000

6 1.25520607
4732157

0.6 6 1.441874542
459709

6 1.12356851
4581633

0.8 6 1.186342439
892262

6 1.04855052
1643719

1 5 1 5 1
Table 3. Results for function � � � �� � 8� � 9

4. Discussion
The numerical results are demonstrated that the

proposed multistep homotopy perturbation method based
on certain way to produce an start value for initial value
converges better than the fifth order three-step method
in[1].
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